mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00

* add stable ci * fix * update * fix * rename tests dir;fix stable ci bug * add timeout limit * update
80 lines
3.0 KiB
Python
80 lines
3.0 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import paddle
|
|
|
|
from fastdeploy.model_executor.layers.sample.meta_data import SamplingMetadata
|
|
from fastdeploy.model_executor.layers.sample.sampler import Sampler
|
|
|
|
|
|
def _create_fake_logits(batch_size: int, vocab_size: int) -> paddle.Tensor:
|
|
fake_logits = paddle.full(shape=[batch_size, vocab_size], fill_value=1e-2, dtype="float32")
|
|
return fake_logits
|
|
|
|
|
|
def _create_penalty_tensor(batch_size: int, penalty_value: float) -> paddle.Tensor:
|
|
return paddle.full(shape=[batch_size, 1], fill_value=penalty_value, dtype="float32")
|
|
|
|
|
|
def _create_tokens_tensor(
|
|
batch_size: int,
|
|
max_seq_len: int,
|
|
) -> paddle.Tensor:
|
|
pre_token_ids = paddle.full(shape=[batch_size, max_seq_len], fill_value=-1, dtype="int64")
|
|
return pre_token_ids
|
|
|
|
|
|
def _create_default_sampling_metadata(
|
|
batch_size: int,
|
|
min_seq_len: int,
|
|
max_seq_len: int,
|
|
) -> SamplingMetadata:
|
|
|
|
fake_sampling_metadata = SamplingMetadata(
|
|
temperature=paddle.full(shape=[batch_size, 1], fill_value=0.9, dtype="float32"),
|
|
top_p=paddle.full(shape=[batch_size, 1], fill_value=0.7, dtype="float32"),
|
|
prompt_ids=paddle.full(shape=[batch_size, max_seq_len], fill_value=0, dtype="int64"),
|
|
prompt_lens=paddle.full(shape=[batch_size, 1], fill_value=5, dtype="int64"),
|
|
step_idx=paddle.full(shape=[batch_size, 1], fill_value=0, dtype="int64"),
|
|
pre_token_ids=_create_tokens_tensor(batch_size, max_seq_len),
|
|
frequency_penalties=_create_penalty_tensor(batch_size, 0.0),
|
|
presence_penalties=_create_penalty_tensor(batch_size, 0.0),
|
|
repetition_penalties=_create_penalty_tensor(batch_size, 1.0),
|
|
min_dec_lens=paddle.full(shape=[batch_size, 1], fill_value=min_seq_len, dtype="int64"),
|
|
bad_words_token_ids=paddle.full(shape=[batch_size], fill_value=-1, dtype="int64"),
|
|
eos_token_ids=paddle.full(shape=[batch_size], fill_value=-2, dtype="int64"),
|
|
min_p=paddle.randn([batch_size]),
|
|
seed=paddle.to_tensor([[2025]]),
|
|
)
|
|
return fake_sampling_metadata
|
|
|
|
|
|
def test_sampler():
|
|
batch_size = 32
|
|
vocab_size = 1024
|
|
min_seq_len = 1
|
|
max_seq_len = 1024
|
|
|
|
sampler = Sampler()
|
|
logits = _create_fake_logits(batch_size, vocab_size)
|
|
sampling_metadata = _create_default_sampling_metadata(batch_size, min_seq_len, max_seq_len)
|
|
next_tokens = sampler(logits, sampling_metadata)
|
|
print(next_tokens)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_sampler()
|