Files
FastDeploy/examples/vision/matting/modnet/cpp/infer.cc
huangjianhui 376fdbfe2c [Other] Update old Api to new ones (#861)
* Update keypointdetection result docs

* Update im.copy() to im in examples

* Update new Api, fastdeploy::vision::Visualize to fastdeploy::vision

* Update SwapBackgroundSegmentation && SwapBackgroundMatting to SwapBackground

* Update README_CN.md

* Update README_CN.md
2022-12-14 17:25:58 +08:00

125 lines
4.3 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision.h"
void CpuInfer(const std::string& model_file, const std::string& image_file,
const std::string& background_file) {
auto model = fastdeploy::vision::matting::MODNet(model_file);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
model.size = {256, 256};
auto im = cv::imread(image_file);
cv::Mat bg = cv::imread(background_file);
fastdeploy::vision::MattingResult res;
if (!model.Predict(&im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
auto vis_im = fastdeploy::vision::VisMatting(im, res);
auto vis_im_with_bg =
fastdeploy::vision::SwapBackground(im, bg, res);
cv::imwrite("visualized_result.jpg", vis_im_with_bg);
cv::imwrite("visualized_result_fg.jpg", vis_im);
std::cout << "Visualized result save in ./visualized_result_replaced_bg.jpg "
"and ./visualized_result_fg.jpg"
<< std::endl;
}
void GpuInfer(const std::string& model_file, const std::string& image_file,
const std::string& background_file) {
auto option = fastdeploy::RuntimeOption();
option.UseGpu();
auto model = fastdeploy::vision::matting::MODNet(model_file, "", option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
model.size = {256, 256};
auto im = cv::imread(image_file);
cv::Mat bg = cv::imread(background_file);
fastdeploy::vision::MattingResult res;
if (!model.Predict(&im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
auto vis_im = fastdeploy::vision::VisMatting(im, res);
auto vis_im_with_bg =
fastdeploy::vision::SwapBackground(im, bg, res);
cv::imwrite("visualized_result.jpg", vis_im_with_bg);
cv::imwrite("visualized_result_fg.jpg", vis_im);
std::cout << "Visualized result save in ./visualized_result_replaced_bg.jpg "
"and ./visualized_result_fg.jpg"
<< std::endl;
}
void TrtInfer(const std::string& model_file, const std::string& image_file,
const std::string& background_file) {
auto option = fastdeploy::RuntimeOption();
option.UseGpu();
option.UseTrtBackend();
option.SetTrtInputShape("input", {1, 3, 256, 256});
auto model = fastdeploy::vision::matting::MODNet(model_file, "", option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
model.size = {256, 256};
auto im = cv::imread(image_file);
cv::Mat bg = cv::imread(background_file);
fastdeploy::vision::MattingResult res;
if (!model.Predict(&im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
auto vis_im = fastdeploy::vision::VisMatting(im, res);
auto vis_im_with_bg =
fastdeploy::vision::SwapBackground(im, bg, res);
cv::imwrite("visualized_result.jpg", vis_im_with_bg);
cv::imwrite("visualized_result_fg.jpg", vis_im);
std::cout << "Visualized result save in ./visualized_result_replaced_bg.jpg "
"and ./visualized_result_fg.jpg"
<< std::endl;
}
int main(int argc, char* argv[]) {
if (argc < 5) {
std::cout
<< "Usage: infer_demo path/to/model_dir path/to/image run_option, "
"e.g ./infer_model ./PP-Matting-512 ./test.jpg ./test_bg.jpg 0"
<< std::endl;
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
"with gpu; 2: run with gpu and use tensorrt backend."
<< std::endl;
return -1;
}
if (std::atoi(argv[4]) == 0) {
CpuInfer(argv[1], argv[2], argv[3]);
} else if (std::atoi(argv[4]) == 1) {
GpuInfer(argv[1], argv[2], argv[3]);
} else if (std::atoi(argv[4]) == 2) {
TrtInfer(argv[1], argv[2], argv[3]);
}
return 0;
}