mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
* [Feature] add metrics for ZMQ and fix multiprocess metrics * fix test_metrics.py --------- Co-authored-by: Jiaxin Sui <95567040+plusNew001@users.noreply.github.com>
783 lines
34 KiB
Python
783 lines
34 KiB
Python
"""
|
||
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
"""
|
||
|
||
import inspect
|
||
import os
|
||
import time
|
||
import traceback
|
||
import uuid
|
||
from copy import copy
|
||
from http import HTTPStatus
|
||
|
||
import numpy as np
|
||
from filelock import FileLock
|
||
|
||
from fastdeploy import envs
|
||
from fastdeploy.entrypoints.openai.utils import DealerConnectionManager
|
||
from fastdeploy.envs import FD_SUPPORT_MAX_CONNECTIONS
|
||
from fastdeploy.eplb.utils import RedundantExpertWorkload
|
||
from fastdeploy.input.preprocess import InputPreprocessor
|
||
from fastdeploy.inter_communicator import (
|
||
IPCSignal,
|
||
KVCacheStatus,
|
||
ModelWeightsStatus,
|
||
PrefixTreeStatus,
|
||
RearrangeExpertStatus,
|
||
ZmqIpcClient,
|
||
)
|
||
from fastdeploy.metrics.metrics import main_process_metrics
|
||
from fastdeploy.platforms import current_platform
|
||
from fastdeploy.trace.constants import LoggingEventName
|
||
from fastdeploy.trace.trace_logger import print as trace_print
|
||
from fastdeploy.utils import (
|
||
EngineError,
|
||
ParameterError,
|
||
StatefulSemaphore,
|
||
api_server_logger,
|
||
)
|
||
|
||
|
||
class EngineClient:
|
||
"""
|
||
EngineClient is a class that handles the communication between the client and the server.
|
||
"""
|
||
|
||
def __init__(
|
||
self,
|
||
model_name_or_path,
|
||
tokenizer,
|
||
max_model_len,
|
||
tensor_parallel_size,
|
||
pid,
|
||
port,
|
||
limit_mm_per_prompt,
|
||
mm_processor_kwargs,
|
||
config,
|
||
reasoning_parser=None,
|
||
data_parallel_size=1,
|
||
enable_logprob=False,
|
||
workers=1,
|
||
tool_parser=None,
|
||
enable_prefix_caching=None,
|
||
splitwise_role=None,
|
||
max_processor_cache=0,
|
||
):
|
||
self.config = config
|
||
self.model_config = config.model_config
|
||
self.enable_mm = self.model_config.enable_mm
|
||
enable_processor_cache = self.enable_mm and max_processor_cache > 0
|
||
input_processor = InputPreprocessor(
|
||
self.model_config,
|
||
reasoning_parser,
|
||
limit_mm_per_prompt,
|
||
mm_processor_kwargs,
|
||
tool_parser,
|
||
enable_processor_cache,
|
||
)
|
||
self.enable_logprob = enable_logprob
|
||
self.reasoning_parser = reasoning_parser
|
||
self.data_processor = input_processor.create_processor()
|
||
self.max_model_len = max_model_len
|
||
self.enable_prefix_caching = enable_prefix_caching
|
||
self.enable_splitwise = splitwise_role != "mixed"
|
||
max_chips_per_node = 16 if current_platform.is_iluvatar() else 8
|
||
|
||
if self.enable_mm and self.enable_prefix_caching:
|
||
from fastdeploy.cache_manager.cache_data import (
|
||
is_mm_model_disable_prefix_cache,
|
||
)
|
||
|
||
self.disable_prefix_mm = is_mm_model_disable_prefix_cache(self.model_config)
|
||
|
||
if tensor_parallel_size <= max_chips_per_node:
|
||
self.is_master = True
|
||
else:
|
||
self.is_master = False
|
||
|
||
if self.config.eplb_config.enable_eplb:
|
||
self.init_eplb_signals(ipc_signal_suffix=port)
|
||
|
||
array_size = min(max_chips_per_node, tensor_parallel_size)
|
||
self.worker_healthy_live_recorded_time_array = np.zeros(shape=[array_size], dtype=np.int32)
|
||
self.worker_healthy_live_signal = IPCSignal(
|
||
name="worker_healthy_live_signal",
|
||
array=self.worker_healthy_live_recorded_time_array,
|
||
dtype=np.int32,
|
||
suffix=port,
|
||
create=False,
|
||
)
|
||
self.semaphore = StatefulSemaphore((FD_SUPPORT_MAX_CONNECTIONS + workers - 1) // workers)
|
||
model_weights_status = np.zeros([1], dtype=np.int32)
|
||
self.model_weights_status_signal = IPCSignal(
|
||
name="model_weights_status",
|
||
array=model_weights_status,
|
||
dtype=np.int32,
|
||
suffix=port,
|
||
create=False,
|
||
)
|
||
prefix_tree_status = np.zeros([1], dtype=np.int32)
|
||
self.prefix_tree_status_signal = IPCSignal(
|
||
name="prefix_tree_status",
|
||
array=prefix_tree_status,
|
||
dtype=np.int32,
|
||
suffix=port,
|
||
create=False,
|
||
)
|
||
kv_cache_status = np.zeros([1], dtype=np.int32)
|
||
self.kv_cache_status_signal = IPCSignal(
|
||
name="kv_cache_status",
|
||
array=kv_cache_status,
|
||
dtype=np.int32,
|
||
suffix=port,
|
||
create=False,
|
||
)
|
||
self.connection_manager = DealerConnectionManager(
|
||
pid, max_connections=int(os.getenv("FD_DEALER_CONNECTIONS", 50))
|
||
)
|
||
self.connection_initialized = False
|
||
self.clear_update_lock = FileLock(f"/tmp/fd_weight_clear_update_lock__pid{pid}_port{port}.lock")
|
||
|
||
def init_eplb_signals(self, ipc_signal_suffix):
|
||
"""
|
||
Initialize eplb signals.
|
||
"""
|
||
if self.config.parallel_config.tensor_parallel_rank != 0:
|
||
# only TP rank 0 need to init eplb signals, rank 0 manage all EPLB signals for all TP ranks
|
||
return
|
||
|
||
self.signal_clear_experts_token_stats_list = []
|
||
self.local_experts_token_stats_array_list = []
|
||
self.expert_tokens_stats_array_list = []
|
||
self.signal_update_weight_from_disk_array_list = []
|
||
self.update_weight_from_disk_result_list = []
|
||
|
||
dp_ipc_signal_suffix = f"{ipc_signal_suffix}_dp{self.config.parallel_config.local_data_parallel_id}"
|
||
rearrange_experts_status = np.zeros([1], dtype=np.int32)
|
||
self.rearrange_experts_signal = IPCSignal(
|
||
name="rearrange_experts_status",
|
||
array=rearrange_experts_status,
|
||
dtype=np.int32,
|
||
suffix=dp_ipc_signal_suffix,
|
||
create=False,
|
||
)
|
||
|
||
rearrange_experts_ips_size_array = np.zeros([1], dtype=np.int32)
|
||
self.rearrange_experts_ips_size_signal = IPCSignal(
|
||
name="rearrange_experts_ips_size",
|
||
array=rearrange_experts_ips_size_array,
|
||
dtype=np.int32,
|
||
suffix=dp_ipc_signal_suffix,
|
||
create=False,
|
||
)
|
||
|
||
self.shm_rearrange_experts_ips_list = IPCSignal(
|
||
name="rearrange_experts_ips_list",
|
||
shm_size=self.config.eplb_config.redundant_expert_ip_shm_size,
|
||
suffix=dp_ipc_signal_suffix,
|
||
create=False,
|
||
)
|
||
|
||
signal_update_weight_from_tensor = np.zeros([1], dtype=np.int32)
|
||
self.signal_update_weight_from_tensor_array = IPCSignal(
|
||
name="signal_update_weight_from_tensor",
|
||
array=signal_update_weight_from_tensor,
|
||
dtype=np.int32,
|
||
suffix=dp_ipc_signal_suffix,
|
||
create=False,
|
||
)
|
||
|
||
for tp_rank_id in range(self.config.parallel_config.tensor_parallel_size):
|
||
tp_ipc_signal_suffix = f"{dp_ipc_signal_suffix}_tp{tp_rank_id}"
|
||
signal_clear_experts_token_stats = np.zeros([1], dtype=np.int32)
|
||
self.signal_clear_experts_token_stats_list.append(
|
||
IPCSignal(
|
||
name="signal_clear_experts_token_stats",
|
||
array=signal_clear_experts_token_stats,
|
||
dtype=np.int32,
|
||
suffix=tp_ipc_signal_suffix,
|
||
create=False,
|
||
)
|
||
)
|
||
|
||
signal_update_weight_from_disk = np.zeros([1], dtype=np.int32)
|
||
self.signal_update_weight_from_disk_array_list.append(
|
||
IPCSignal(
|
||
name="signal_update_weight_from_disk",
|
||
array=signal_update_weight_from_disk,
|
||
dtype=np.int32,
|
||
suffix=tp_ipc_signal_suffix,
|
||
create=False,
|
||
)
|
||
)
|
||
|
||
result_update_weight_from_disk = np.zeros([1], dtype=np.int32)
|
||
self.update_weight_from_disk_result_list.append(
|
||
IPCSignal(
|
||
name="result_update_weight_from_disk",
|
||
array=result_update_weight_from_disk,
|
||
dtype=np.int32,
|
||
suffix=tp_ipc_signal_suffix,
|
||
create=False,
|
||
)
|
||
)
|
||
|
||
experts_token_stats = np.zeros(
|
||
(self.config.model_config.num_hidden_layers, self.config.model_config.moe_num_experts),
|
||
dtype=np.int32,
|
||
)
|
||
self.expert_tokens_stats_array_list.append(
|
||
IPCSignal(
|
||
name="all_experts_token_stats",
|
||
array=experts_token_stats,
|
||
dtype=np.int32,
|
||
suffix=tp_ipc_signal_suffix,
|
||
create=False,
|
||
)
|
||
)
|
||
self.local_experts_token_stats_array_list.append(
|
||
IPCSignal(
|
||
name="local_experts_token_stats",
|
||
array=experts_token_stats,
|
||
dtype=np.int32,
|
||
suffix=tp_ipc_signal_suffix,
|
||
create=False,
|
||
)
|
||
)
|
||
|
||
def create_zmq_client(self, model, mode):
|
||
"""
|
||
Create a ZMQ client.
|
||
"""
|
||
self.zmq_client = ZmqIpcClient(model, mode)
|
||
self.zmq_client.connect()
|
||
|
||
async def format_and_add_data(self, prompts: dict):
|
||
"""
|
||
Format the request data and send the request to the server.
|
||
"""
|
||
if "request_id" not in prompts:
|
||
request_id = str(uuid.uuid4())
|
||
prompts["request_id"] = request_id
|
||
|
||
if "max_tokens" not in prompts:
|
||
prompts["max_tokens"] = self.max_model_len - 1
|
||
|
||
await self.add_requests(prompts)
|
||
return prompts["prompt_token_ids"]
|
||
|
||
def _check_mm_disable_prefix_cache(self, task):
|
||
is_multimodal_data = False
|
||
if self.disable_prefix_mm:
|
||
multimodal_inputs = task.get("multimodal_inputs", [])
|
||
if multimodal_inputs:
|
||
token_type_ids = multimodal_inputs.get("token_type_ids", [])
|
||
if token_type_ids:
|
||
is_multimodal_data = np.sum(token_type_ids) > 0
|
||
return is_multimodal_data
|
||
|
||
async def add_requests(self, task):
|
||
"""
|
||
Add a new request to the queue.
|
||
|
||
Args:
|
||
task: Request A dictionary representing the request.
|
||
sampling_params: A dictionary representing the sampling parameters.
|
||
|
||
Returns:
|
||
None
|
||
"""
|
||
|
||
task["preprocess_start_time"] = time.time()
|
||
trace_print(LoggingEventName.PREPROCESSING_START, task["request_id"], task.get("user", ""))
|
||
try:
|
||
chat_template_kwargs = task.get("chat_template_kwargs") or {}
|
||
chat_template_kwargs.update({"chat_template": task.get("chat_template")})
|
||
task["chat_template_kwargs"] = chat_template_kwargs
|
||
if inspect.iscoroutinefunction(self.data_processor.process_request_dict):
|
||
await self.data_processor.process_request_dict(task, self.max_model_len)
|
||
else:
|
||
self.data_processor.process_request_dict(task, self.max_model_len)
|
||
|
||
if self.enable_mm and self.enable_prefix_caching:
|
||
if self._check_mm_disable_prefix_cache(task):
|
||
api_server_logger.error(
|
||
"The current service does not support processing requests containing multimodal data when prefix cache is enabled. Please send only text-based requests or disable prefix cache"
|
||
)
|
||
raise EngineError(
|
||
"The current service does not support processing requests containing multimodal data when prefix cache is enabled. Please send only text-based requests or disable prefix cache",
|
||
error_code=400,
|
||
)
|
||
|
||
task["prompt_token_ids_len"] = len(task["prompt_token_ids"])
|
||
input_ids_len = task["prompt_token_ids_len"]
|
||
|
||
task["max_tokens"] = min(self.max_model_len - input_ids_len, task.get("max_tokens"))
|
||
min_tokens = task.get("min_tokens", 1)
|
||
if "messages" in task:
|
||
del task["messages"]
|
||
api_server_logger.info(f"task['max_tokens']:{task['max_tokens']}")
|
||
main_process_metrics.request_params_max_tokens.observe(task["max_tokens"])
|
||
main_process_metrics.prompt_tokens_total.inc(input_ids_len)
|
||
main_process_metrics.request_prompt_tokens.observe(input_ids_len)
|
||
except Exception as e:
|
||
api_server_logger.error(f"add_requests error: {e}, {str(traceback.format_exc())}")
|
||
raise EngineError(str(e), error_code=400)
|
||
|
||
if input_ids_len + min_tokens >= self.max_model_len:
|
||
error_msg = (
|
||
f"Input text is too long, input_ids_len ({input_ids_len}) "
|
||
f"+ min_tokens({min_tokens}) >= max_model_len({self.max_model_len})"
|
||
)
|
||
api_server_logger.error(error_msg)
|
||
raise EngineError(error_msg, error_code=400)
|
||
|
||
if input_ids_len > self.max_model_len:
|
||
error_msg = (
|
||
f"Length of input token({input_ids_len}) exceeds the limit max_model_len({self.max_model_len})."
|
||
)
|
||
api_server_logger.error(error_msg)
|
||
raise EngineError(error_msg, error_code=400)
|
||
|
||
if "stop_seqs_len" in task:
|
||
stop_seqs_len = task["stop_seqs_len"]
|
||
max_stop_seqs_num = envs.FD_MAX_STOP_SEQS_NUM
|
||
if len(stop_seqs_len) > max_stop_seqs_num:
|
||
error_msg = (
|
||
f"Length of stop ({stop_seqs_len}) exceeds the limit max_stop_seqs_num({max_stop_seqs_num})."
|
||
"Please reduce the number of stop or set a lager max_stop_seqs_num by `FD_MAX_STOP_SEQS_NUM`"
|
||
)
|
||
api_server_logger.error(error_msg)
|
||
raise EngineError(error_msg, error_code=400)
|
||
stop_seqs_max_len = envs.FD_STOP_SEQS_MAX_LEN
|
||
for single_stop_seq_len in stop_seqs_len:
|
||
if single_stop_seq_len > stop_seqs_max_len:
|
||
error_msg = (
|
||
f"Length of stop_seqs({single_stop_seq_len}) exceeds the limit stop_seqs_max_len({stop_seqs_max_len})."
|
||
"Please reduce the length of stop sequences or set a larger stop_seqs_max_len by `FD_STOP_SEQS_MAX_LEN`"
|
||
)
|
||
api_server_logger.error(error_msg)
|
||
raise EngineError(error_msg, error_code=400)
|
||
|
||
task["preprocess_end_time"] = time.time()
|
||
preprocess_cost_time = task["preprocess_end_time"] - task["preprocess_start_time"]
|
||
api_server_logger.info(
|
||
f"Cache request with request_id ({task.get('request_id')}), "
|
||
f"preprocess time cost {preprocess_cost_time}"
|
||
)
|
||
|
||
self.valid_parameters(task)
|
||
api_server_logger.debug(f"Receive task: {task}")
|
||
n = task.get("n", 1)
|
||
try:
|
||
request_id_idx = task.get("request_id")
|
||
parts = request_id_idx.rsplit("_", 1)
|
||
if len(parts) == 1:
|
||
self._send_task(task)
|
||
else:
|
||
request_id = parts[0]
|
||
index = int(parts[1])
|
||
for i in range(index * n, (index + 1) * n):
|
||
child_task = copy(task)
|
||
child_task["request_id"] = f"{request_id}_{i}"
|
||
self._send_task(child_task)
|
||
except Exception as e:
|
||
api_server_logger.error(f"zmq_client send task error: {e}, {str(traceback.format_exc())}")
|
||
raise EngineError(str(e), error_code=400)
|
||
|
||
def _send_task(self, task):
|
||
if not self.enable_mm:
|
||
self.zmq_client.send_json(task)
|
||
else:
|
||
self.zmq_client.send_pyobj(task)
|
||
|
||
def valid_parameters(self, data):
|
||
"""
|
||
Validate stream options
|
||
超参数(top_p、seed、frequency_penalty、temperature、presence_penalty)的校验逻辑
|
||
前置到了ChatCompletionRequest/CompletionRequest中
|
||
"""
|
||
|
||
if data.get("max_tokens") is not None:
|
||
if data["max_tokens"] < 1 or data["max_tokens"] >= self.max_model_len:
|
||
api_server_logger.error(
|
||
f"req_id:{data['request_id']}, max_tokens must be defined [1, {self.max_model_len}), but now it's {data['max_tokens']}."
|
||
)
|
||
raise ValueError(
|
||
f"max_tokens can be defined [1, {self.max_model_len}), but now it's {data['max_tokens']}."
|
||
)
|
||
|
||
if data.get("reasoning_max_tokens") is not None:
|
||
if data["reasoning_max_tokens"] < 1:
|
||
raise ParameterError("reasoning_max_tokens", "reasoning_max_tokens must be greater than 1")
|
||
if data["reasoning_max_tokens"] > data["max_tokens"]:
|
||
data["reasoning_max_tokens"] = data["max_tokens"]
|
||
api_server_logger.warning(
|
||
f"req_id: {data['request_id']}, reasoning_max_tokens exceeds max_tokens, the value of reasoning_max_tokens will be adjusted to {data['max_tokens']}"
|
||
)
|
||
if data.get("temperature") is not None and abs(data["temperature"]) < 1e-6:
|
||
data["temperature"] = 1e-6
|
||
# logprobs
|
||
logprobs = data.get("logprobs")
|
||
top_logprobs = None
|
||
|
||
if isinstance(logprobs, bool) and logprobs:
|
||
if not self.enable_logprob:
|
||
err_msg = "Logprobs is disabled, please enable it in startup config."
|
||
api_server_logger.error(err_msg)
|
||
raise ParameterError("logprobs", err_msg)
|
||
top_logprobs = data.get("top_logprobs")
|
||
elif isinstance(logprobs, int):
|
||
top_logprobs = logprobs
|
||
elif logprobs:
|
||
raise ParameterError("logprobs", "Invalid type for 'logprobs'")
|
||
|
||
# enable_logprob
|
||
if top_logprobs:
|
||
if not self.enable_logprob:
|
||
err_msg = "Logprobs is disabled, please enable it in startup config."
|
||
api_server_logger.error(err_msg)
|
||
raise ParameterError("logprobs", err_msg)
|
||
|
||
if not isinstance(top_logprobs, int):
|
||
err_type = type(top_logprobs).__name__
|
||
err_msg = f"Invalid type for 'top_logprobs': expected int but got {err_type}."
|
||
api_server_logger.error(err_msg)
|
||
raise ParameterError("top_logprobs", err_msg)
|
||
|
||
if top_logprobs < 0:
|
||
err_msg = f"Invalid 'top_logprobs': must be >= 0, got {top_logprobs}."
|
||
api_server_logger.error(err_msg)
|
||
raise ParameterError("top_logprobs", err_msg)
|
||
|
||
if top_logprobs > 20:
|
||
err_msg = "Invalid value for 'top_logprobs': must be <= 20."
|
||
api_server_logger.error(err_msg)
|
||
raise ParameterError("top_logprobs", err_msg)
|
||
|
||
def check_health(self, time_interval_threashold=30):
|
||
"""
|
||
Check the health of the model server by checking whether all workers are alive.
|
||
|
||
"""
|
||
if self.worker_healthy_live_signal.value[0]:
|
||
elapsed_time = time.time() - self.worker_healthy_live_signal.value[0]
|
||
if elapsed_time > time_interval_threashold:
|
||
return False, "Worker Service Not Healthy"
|
||
|
||
return True, ""
|
||
|
||
def is_workers_alive(self):
|
||
"""
|
||
Check the health of the model server by checking whether all workers are alive.
|
||
|
||
"""
|
||
if self.model_weights_status_signal.value[0] == ModelWeightsStatus.NORMAL:
|
||
return True, ""
|
||
else:
|
||
return False, "No model weight enabled"
|
||
|
||
def update_model_weight(self, timeout=300):
|
||
"""
|
||
Update the model weight by sending a signal to the server.
|
||
1 : worker receive the signal and start to update model weight
|
||
2 : worker update finish and notify client
|
||
"""
|
||
with self.clear_update_lock:
|
||
if self.model_weights_status_signal.value[0] == ModelWeightsStatus.NORMAL:
|
||
return True, ""
|
||
if self.model_weights_status_signal.value[0] == ModelWeightsStatus.UPDATING:
|
||
return False, "worker is updating model weight already"
|
||
if self.model_weights_status_signal.value[0] == ModelWeightsStatus.CLEARING:
|
||
return False, "worker is clearing model weight, cannot update now"
|
||
|
||
self.model_weights_status_signal.value[0] = ModelWeightsStatus.UPDATING
|
||
if self.enable_prefix_caching or self.enable_splitwise:
|
||
self.kv_cache_status_signal.value[0] = KVCacheStatus.UPDATING
|
||
if self.enable_prefix_caching:
|
||
self.prefix_tree_status_signal.value[0] = PrefixTreeStatus.UPDATING
|
||
api_server_logger.info(f"start update model weight {self.model_weights_status_signal.value}")
|
||
all_updated = False
|
||
while timeout >= 0 and not all_updated:
|
||
api_server_logger.info(
|
||
f"Updating model weights.. "
|
||
f"model_weights_status: {self.model_weights_status_signal.value[0]}, "
|
||
f"prefix_tree_status: {self.prefix_tree_status_signal.value[0]}, "
|
||
f"kv_cache_status: {self.kv_cache_status_signal.value[0]} "
|
||
)
|
||
weight_updated = self.model_weights_status_signal.value[0] == ModelWeightsStatus.NORMAL
|
||
cache_updated = self.kv_cache_status_signal.value[0] == KVCacheStatus.NORMAL
|
||
prefix_updated = self.prefix_tree_status_signal.value[0] == PrefixTreeStatus.NORMAL
|
||
if self.enable_prefix_caching or self.enable_splitwise:
|
||
if self.enable_prefix_caching:
|
||
all_updated = weight_updated and cache_updated and prefix_updated
|
||
else:
|
||
all_updated = weight_updated and cache_updated
|
||
else:
|
||
all_updated = weight_updated
|
||
time.sleep(1)
|
||
timeout -= 1
|
||
if timeout < 0:
|
||
return False, "Update model weight timeout"
|
||
time.sleep(1)
|
||
return True, ""
|
||
|
||
def clear_load_weight(self, timeout=300):
|
||
"""
|
||
Clear the load weight status.
|
||
-1 : worker receive the signal and start to clear model weight
|
||
-2 : worker clear finish and notify client
|
||
"""
|
||
|
||
with self.clear_update_lock:
|
||
if self.model_weights_status_signal.value[0] == ModelWeightsStatus.CLEARED:
|
||
return True, ""
|
||
if self.model_weights_status_signal.value[0] == ModelWeightsStatus.CLEARING:
|
||
return False, "worker is clearing model weight already"
|
||
if self.model_weights_status_signal.value[0] == ModelWeightsStatus.UPDATING:
|
||
return False, "worker is updating model weight, cannot clear now"
|
||
|
||
self.model_weights_status_signal.value[0] = ModelWeightsStatus.CLEARING
|
||
if self.enable_prefix_caching or self.enable_splitwise:
|
||
self.kv_cache_status_signal.value[0] = KVCacheStatus.CLEARING
|
||
if self.enable_prefix_caching:
|
||
self.prefix_tree_status_signal.value[0] = PrefixTreeStatus.CLEARING
|
||
|
||
api_server_logger.info(f"start clear model weight {self.model_weights_status_signal.value}")
|
||
all_cleared = False
|
||
while timeout >= 0 and not all_cleared:
|
||
api_server_logger.info(
|
||
f"Clearing model weights.. "
|
||
f"model_weights_status: {self.model_weights_status_signal.value[0]}, "
|
||
f"prefix_tree_status: {self.prefix_tree_status_signal.value[0]}, "
|
||
f"kv_cache_status: {self.kv_cache_status_signal.value[0]} "
|
||
)
|
||
weight_cleared = self.model_weights_status_signal.value[0] == ModelWeightsStatus.CLEARED
|
||
cache_cleared = self.kv_cache_status_signal.value[0] == KVCacheStatus.CLEARED
|
||
prefix_cleared = self.prefix_tree_status_signal.value[0] == PrefixTreeStatus.CLEARED
|
||
if self.enable_prefix_caching or self.enable_splitwise:
|
||
if self.enable_prefix_caching:
|
||
all_cleared = weight_cleared and cache_cleared and prefix_cleared
|
||
else:
|
||
all_cleared = weight_cleared and cache_cleared
|
||
else:
|
||
all_cleared = weight_cleared
|
||
time.sleep(1)
|
||
timeout -= 1
|
||
|
||
if timeout < 0:
|
||
return False, "Clear model weight timeout"
|
||
time.sleep(1)
|
||
return True, ""
|
||
|
||
def check_model_weight_status(self):
|
||
return self.model_weights_status_signal.value[0] < 0
|
||
|
||
async def rearrange_experts(self, request_dict: dict):
|
||
"""
|
||
rearrange experts
|
||
Args:
|
||
request_dict (dict): request body
|
||
Returns:
|
||
tuple: response body, status code
|
||
"""
|
||
eplb_config = self.config.eplb_config
|
||
if not eplb_config.enable_eplb:
|
||
content = {"code": 1, "msg": "redundant expert is disabled"}
|
||
status_code = HTTPStatus.BAD_REQUEST
|
||
return content, status_code
|
||
|
||
if (
|
||
request_dict.get("user", "") != eplb_config.redundant_expert_api_user
|
||
or request_dict.get("passwd", "") != eplb_config.redundant_expert_api_password
|
||
):
|
||
content = {"code": 1, "msg": "user or passwd is invalid"}
|
||
status_code = HTTPStatus.UNAUTHORIZED
|
||
return content, status_code
|
||
|
||
if self.config.parallel_config.tensor_parallel_rank != 0:
|
||
content = {
|
||
"code": 1,
|
||
"msg": f"actual rank {self.config.parallel_config.tensor_parallel_rank}, expect rank 0",
|
||
}
|
||
status_code = HTTPStatus.BAD_REQUEST
|
||
return content, status_code
|
||
|
||
action = request_dict.get("action", "")
|
||
api_server_logger.info(f"redundant_expert: rearrange_experts recv request, action {action}")
|
||
if action == "":
|
||
# action: start rearrange experts
|
||
# params: {'user': 'xxx', 'passwd': 'xxx', 'ips': ['10.54.99.77:8000', '10.54.99.77:8300']}
|
||
if self.rearrange_experts_signal.value[0] != RearrangeExpertStatus.FREE.value:
|
||
content = {
|
||
"code": 1,
|
||
"msg": f"rearrange is doing. actual status {self.rearrange_experts_signal.value[0]}, expect status {RearrangeExpertStatus.FREE.value}",
|
||
}
|
||
status_code = HTTPStatus.BAD_REQUEST
|
||
if "ips" not in request_dict and content is None:
|
||
content = {"code": 1, "msg": "ips in request is None"}
|
||
status_code = HTTPStatus.BAD_REQUEST
|
||
|
||
if content is not None:
|
||
return content, status_code
|
||
|
||
data_bytes = (";".join(request_dict["ips"])).encode("utf-8")
|
||
data_size = len(data_bytes)
|
||
if data_size > eplb_config.redundant_expert_ip_shm_size:
|
||
content = {
|
||
"code": 1,
|
||
"msg": f"actual ips size {data_size}, max limit {eplb_config.redundant_expert_ip_shm_size}",
|
||
}
|
||
status_code = HTTPStatus.INTERNAL_SERVER_ERROR
|
||
else:
|
||
self.rearrange_experts_ips_size_signal.value[0] = data_size
|
||
self.shm_rearrange_experts_ips_list.shm.buf[:data_size] = data_bytes
|
||
content = {"code": 0, "msg": "ok"}
|
||
status_code = HTTPStatus.OK
|
||
return content, status_code
|
||
elif action == "recv_expert_weight":
|
||
# action: receive global expert workload, and begin update weight from disk
|
||
# params: {'user': 'xxx', 'passwd': 'xxx', 'weight': (layers, experts)}
|
||
if "data" not in request_dict or not isinstance(request_dict["data"], list):
|
||
content = {"code": 1, "msg": "data not in request or data is not a list"}
|
||
status_code = HTTPStatus.BAD_REQUEST
|
||
else:
|
||
weight = np.array(request_dict["data"], dtype=np.int32)
|
||
for idx in range(len(self.expert_tokens_stats_array_list)):
|
||
self.expert_tokens_stats_array_list[idx].value[:] = weight[:]
|
||
self.signal_update_weight_from_disk_array_list[idx].value[0] = 1
|
||
|
||
content = {"code": 0, "msg": "ok"}
|
||
status_code = HTTPStatus.OK
|
||
return content, status_code
|
||
elif action == "update_weight_from_tensor":
|
||
if self.config.scheduler_config.splitwise_role != "prefill" and content is None:
|
||
content = {
|
||
"code": 1,
|
||
"msg": f"actual role {self.config.scheduler_config.splitwise_role}, expect role prefill",
|
||
}
|
||
status_code = HTTPStatus.BAD_REQUEST
|
||
if self.rearrange_experts_signal.value[0] != RearrangeExpertStatus.LOAD_SUCC.value and content is None:
|
||
content = {
|
||
"code": 1,
|
||
"msg": f"actual status {self.rearrange_experts_signal.value[0]}, expect status {RearrangeExpertStatus.LOAD_SUCC.value}",
|
||
}
|
||
status_code = HTTPStatus.BAD_REQUEST
|
||
|
||
if content is None:
|
||
self.signal_update_weight_from_tensor_array.value[0] = 1
|
||
content = {"code": 0, "msg": "ok"}
|
||
status_code = HTTPStatus.OK
|
||
return content, status_code
|
||
else:
|
||
content = {"code": 1, "msg": f"invalid action {action}"}
|
||
status_code = HTTPStatus.BAD_REQUEST
|
||
return content, status_code
|
||
|
||
async def get_per_expert_tokens_stats(self, request_dict: dict):
|
||
"""
|
||
get per expert tokens stats
|
||
|
||
Args:
|
||
request_dict (dict): request body
|
||
Returns:
|
||
tuple: response body, status code
|
||
"""
|
||
eplb_config = self.config.eplb_config
|
||
if not eplb_config.enable_eplb:
|
||
content = {"code": 1, "msg": "redundant expert is disabled"}
|
||
status_code = HTTPStatus.BAD_REQUEST
|
||
return content, status_code
|
||
|
||
if (
|
||
request_dict.get("user", "") != eplb_config.redundant_expert_api_user
|
||
or request_dict.get("passwd", "") != eplb_config.redundant_expert_api_password
|
||
):
|
||
content = {"code": 1, "msg": "user or passwd is invalid"}
|
||
status_code = HTTPStatus.UNAUTHORIZED
|
||
return content, status_code
|
||
|
||
if self.config.parallel_config.tensor_parallel_rank != 0:
|
||
content = {
|
||
"code": 1,
|
||
"msg": f"actual rank {self.config.parallel_config.tensor_parallel_rank}, expect rank 0",
|
||
}
|
||
status_code = HTTPStatus.BAD_REQUEST
|
||
return content, status_code
|
||
|
||
if "clear_stat" in request_dict and request_dict["clear_stat"]:
|
||
for clear_experts_token_stats in self.signal_clear_experts_token_stats_list:
|
||
clear_experts_token_stats.value[0] = 1
|
||
|
||
local_experts_list = []
|
||
for local_experts_token_stats in self.local_experts_token_stats_array_list:
|
||
local_experts_list.append(local_experts_token_stats.value.tolist())
|
||
content = {"code": 0, "msg": "ok", "data": local_experts_list}
|
||
status_code = HTTPStatus.OK
|
||
return content, status_code
|
||
|
||
async def check_redundant(self, request_dict: dict):
|
||
"""
|
||
check redundant
|
||
Args:
|
||
request_dict (dict): request body
|
||
Returns:
|
||
tuple: response body, status code
|
||
"""
|
||
content, status_code = None, HTTPStatus.OK
|
||
eplb_config = self.config.eplb_config
|
||
|
||
if not eplb_config.enable_eplb:
|
||
content = {"code": 1, "msg": "redundant expert is disabled"}
|
||
status_code = HTTPStatus.BAD_REQUEST
|
||
return content, status_code
|
||
|
||
if (
|
||
request_dict.get("user", "") != eplb_config.redundant_expert_api_user
|
||
or request_dict.get("passwd", "") != eplb_config.redundant_expert_api_password
|
||
):
|
||
content = {"code": 1, "msg": "user or passwd is invalid"}
|
||
status_code = HTTPStatus.UNAUTHORIZED
|
||
return content, status_code
|
||
|
||
if self.config.parallel_config.tensor_parallel_rank != 0:
|
||
content = {
|
||
"code": 1,
|
||
"msg": f"actual rank {self.config.parallel_config.tensor_parallel_rank}, expect rank 0",
|
||
}
|
||
status_code = HTTPStatus.BAD_REQUEST
|
||
return content, status_code
|
||
|
||
action = request_dict.get("action", "")
|
||
if action == "":
|
||
status = "unknown"
|
||
try:
|
||
status = RearrangeExpertStatus(self.rearrange_experts_signal.value[0]).name
|
||
except Exception:
|
||
# Ignore errors if status cannot be determined; default to "unknown"
|
||
pass
|
||
content = {"code": 0, "msg": "ok", "status": status}
|
||
get_workloads = False if "check_get_workloads" not in request_dict else request_dict["check_get_workloads"]
|
||
if get_workloads:
|
||
content["data"], content["msg"] = RedundantExpertWorkload(eplb_config.redundant_expert_meta_dir).load()
|
||
status_code = HTTPStatus.OK
|
||
elif action == "check_load_weight_result":
|
||
update_weight_from_disk_list = []
|
||
for update_weight_result in self.update_weight_from_disk_result_list:
|
||
update_weight_from_disk_list.append(update_weight_result.value[0].tolist())
|
||
content = {"code": 0, "msg": "ok", "data": update_weight_from_disk_list}
|
||
status_code = HTTPStatus.OK
|
||
return content, status_code
|