mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-30 11:26:39 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			146 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			146 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #include <Eigen/QR>
 | |
| #include "main.h"
 | |
| #include "solverbase.h"
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void qr(const MatrixType& m) {
 | |
|   Index rows = m.rows();
 | |
|   Index cols = m.cols();
 | |
| 
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime,
 | |
|                  MatrixType::RowsAtCompileTime>
 | |
|       MatrixQType;
 | |
| 
 | |
|   MatrixType a = MatrixType::Random(rows, cols);
 | |
|   HouseholderQR<MatrixType> qrOfA(a);
 | |
| 
 | |
|   MatrixQType q = qrOfA.householderQ();
 | |
|   VERIFY_IS_UNITARY(q);
 | |
| 
 | |
|   MatrixType r = qrOfA.matrixQR().template triangularView<Upper>();
 | |
|   VERIFY_IS_APPROX(a, qrOfA.householderQ() * r);
 | |
| }
 | |
| 
 | |
| template <typename MatrixType, int Cols2>
 | |
| void qr_fixedsize() {
 | |
|   enum {
 | |
|     Rows = MatrixType::RowsAtCompileTime,
 | |
|     Cols = MatrixType::ColsAtCompileTime
 | |
|   };
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   Matrix<Scalar, Rows, Cols> m1 = Matrix<Scalar, Rows, Cols>::Random();
 | |
|   HouseholderQR<Matrix<Scalar, Rows, Cols> > qr(m1);
 | |
| 
 | |
|   Matrix<Scalar, Rows, Cols> r = qr.matrixQR();
 | |
|   // FIXME need better way to construct trapezoid
 | |
|   for (int i = 0; i < Rows; i++)
 | |
|     for (int j = 0; j < Cols; j++)
 | |
|       if (i > j) r(i, j) = Scalar(0);
 | |
| 
 | |
|   VERIFY_IS_APPROX(m1, qr.householderQ() * r);
 | |
| 
 | |
|   check_solverbase<Matrix<Scalar, Cols, Cols2>, Matrix<Scalar, Rows, Cols2> >(
 | |
|       m1, qr, Rows, Cols, Cols2);
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void qr_invertible() {
 | |
|   using std::log;
 | |
|   using std::abs;
 | |
|   using std::pow;
 | |
|   using std::max;
 | |
|   typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
| 
 | |
|   STATIC_CHECK(
 | |
|       (internal::is_same<typename HouseholderQR<MatrixType>::StorageIndex,
 | |
|                          int>::value));
 | |
| 
 | |
|   int size = internal::random<int>(10, 50);
 | |
| 
 | |
|   MatrixType m1(size, size), m2(size, size), m3(size, size);
 | |
|   m1 = MatrixType::Random(size, size);
 | |
| 
 | |
|   if (internal::is_same<RealScalar, float>::value) {
 | |
|     // let's build a matrix more stable to inverse
 | |
|     MatrixType a = MatrixType::Random(size, size * 4);
 | |
|     m1 += a * a.adjoint();
 | |
|   }
 | |
| 
 | |
|   HouseholderQR<MatrixType> qr(m1);
 | |
| 
 | |
|   check_solverbase<MatrixType, MatrixType>(m1, qr, size, size, size);
 | |
| 
 | |
|   // now construct a matrix with prescribed determinant
 | |
|   m1.setZero();
 | |
|   for (int i = 0; i < size; i++) m1(i, i) = internal::random<Scalar>();
 | |
|   RealScalar absdet = abs(m1.diagonal().prod());
 | |
|   m3 = qr.householderQ();  // get a unitary
 | |
|   m1 = m3 * m1 * m3;
 | |
|   qr.compute(m1);
 | |
|   VERIFY_IS_APPROX(log(absdet), qr.logAbsDeterminant());
 | |
|   // This test is tricky if the determinant becomes too small.
 | |
|   // Since we generate random numbers with magnitude range [0,1], the average
 | |
|   // determinant is 0.5^size
 | |
|   VERIFY_IS_MUCH_SMALLER_THAN(
 | |
|       abs(absdet - qr.absDeterminant()),
 | |
|       numext::maxi(
 | |
|           RealScalar(pow(0.5, size)),
 | |
|           numext::maxi<RealScalar>(abs(absdet), abs(qr.absDeterminant()))));
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void qr_verify_assert() {
 | |
|   MatrixType tmp;
 | |
| 
 | |
|   HouseholderQR<MatrixType> qr;
 | |
|   VERIFY_RAISES_ASSERT(qr.matrixQR())
 | |
|   VERIFY_RAISES_ASSERT(qr.solve(tmp))
 | |
|   VERIFY_RAISES_ASSERT(qr.transpose().solve(tmp))
 | |
|   VERIFY_RAISES_ASSERT(qr.adjoint().solve(tmp))
 | |
|   VERIFY_RAISES_ASSERT(qr.householderQ())
 | |
|   VERIFY_RAISES_ASSERT(qr.absDeterminant())
 | |
|   VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(qr) {
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_1(qr(MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE),
 | |
|                                internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
 | |
|     CALL_SUBTEST_2(
 | |
|         qr(MatrixXcd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2),
 | |
|                      internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2))));
 | |
|     CALL_SUBTEST_3((qr_fixedsize<Matrix<float, 3, 4>, 2>()));
 | |
|     CALL_SUBTEST_4((qr_fixedsize<Matrix<double, 6, 2>, 4>()));
 | |
|     CALL_SUBTEST_5((qr_fixedsize<Matrix<double, 2, 5>, 7>()));
 | |
|     CALL_SUBTEST_11(qr(Matrix<float, 1, 1>()));
 | |
|   }
 | |
| 
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     CALL_SUBTEST_1(qr_invertible<MatrixXf>());
 | |
|     CALL_SUBTEST_6(qr_invertible<MatrixXd>());
 | |
|     CALL_SUBTEST_7(qr_invertible<MatrixXcf>());
 | |
|     CALL_SUBTEST_8(qr_invertible<MatrixXcd>());
 | |
|   }
 | |
| 
 | |
|   CALL_SUBTEST_9(qr_verify_assert<Matrix3f>());
 | |
|   CALL_SUBTEST_10(qr_verify_assert<Matrix3d>());
 | |
|   CALL_SUBTEST_1(qr_verify_assert<MatrixXf>());
 | |
|   CALL_SUBTEST_6(qr_verify_assert<MatrixXd>());
 | |
|   CALL_SUBTEST_7(qr_verify_assert<MatrixXcf>());
 | |
|   CALL_SUBTEST_8(qr_verify_assert<MatrixXcd>());
 | |
| 
 | |
|   // Test problem size constructors
 | |
|   CALL_SUBTEST_12(HouseholderQR<MatrixXf>(10, 20));
 | |
| }
 | 
