Files
FastDeploy/fastdeploy/vision/detection/contrib/yolov5/yolov5.cc
Dantès 34bea7649d [Backend] add sophgo backend (#1015)
* Add Sophgo Device

add sophgo backend in fastdeploy

add resnet50, yolov5s, liteseg examples.

* replace sophgo lib with download links; fix model.cc bug

* modify CodeStyle

* remove unuseful files;change the names of sophgo device and sophgo
backend

* sophgo support python and add python examples

* remove unuseful rows in cmake according pr

Co-authored-by: Zilong Xing <zilong.xing@sophgo.com>
2023-01-04 15:49:17 +08:00

95 lines
3.2 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/detection/contrib/yolov5/yolov5.h"
namespace fastdeploy {
namespace vision {
namespace detection {
YOLOv5::YOLOv5(const std::string& model_file, const std::string& params_file,
const RuntimeOption& custom_option,
const ModelFormat& model_format) {
if (model_format == ModelFormat::ONNX) {
valid_cpu_backends = {Backend::OPENVINO, Backend::ORT};
valid_gpu_backends = {Backend::ORT, Backend::TRT};
} else if (model_format == ModelFormat::SOPHGO) {
valid_sophgonpu_backends = {Backend::SOPHGOTPU};
} else {
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE};
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
valid_kunlunxin_backends = {Backend::LITE};
valid_timvx_backends = {Backend::LITE};
valid_ascend_backends = {Backend::LITE};
}
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
initialized = Initialize();
}
bool YOLOv5::Initialize() {
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
return true;
}
bool YOLOv5::Predict(cv::Mat* im, DetectionResult* result, float conf_threshold, float nms_threshold) {
postprocessor_.SetConfThreshold(conf_threshold);
postprocessor_.SetNMSThreshold(nms_threshold);
if (!Predict(*im, result)) {
return false;
}
return true;
}
bool YOLOv5::Predict(const cv::Mat& im, DetectionResult* result) {
std::vector<DetectionResult> results;
if (!BatchPredict({im}, &results)) {
return false;
}
*result = std::move(results[0]);
return true;
}
bool YOLOv5::BatchPredict(const std::vector<cv::Mat>& images, std::vector<DetectionResult>* results) {
std::vector<std::map<std::string, std::array<float, 2>>> ims_info;
std::vector<FDMat> fd_images = WrapMat(images);
if (!preprocessor_.Run(&fd_images, &reused_input_tensors_, &ims_info)) {
FDERROR << "Failed to preprocess the input image." << std::endl;
return false;
}
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
if (!Infer(reused_input_tensors_, &reused_output_tensors_)) {
FDERROR << "Failed to inference by runtime." << std::endl;
return false;
}
if (!postprocessor_.Run(reused_output_tensors_, results, ims_info)) {
FDERROR << "Failed to postprocess the inference results by runtime." << std::endl;
return false;
}
return true;
}
} // namespace detection
} // namespace vision
} // namespace fastdeploy