mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 03:46:40 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			152 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			152 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| 
 | |
| from typing import Dict
 | |
| 
 | |
| import numpy as np
 | |
| import paddle
 | |
| from paddle import nn
 | |
| from paddle.distributed import fleet
 | |
| 
 | |
| from fastdeploy.config import FDConfig
 | |
| 
 | |
| from .utils import get_tensor
 | |
| 
 | |
| 
 | |
| class VocabParallelEmbedding(nn.Layer):
 | |
|     """
 | |
|     VocabParallelEmbedding Layer
 | |
|     """
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         fd_config: FDConfig,
 | |
|         num_embeddings: int,
 | |
|         embedding_dim: int = 768,
 | |
|         params_dtype: str = "bfloat16",
 | |
|         prefix="",
 | |
|     ) -> None:
 | |
|         """
 | |
|         Initialize the VocabParallelEmbedding layer for the model.
 | |
| 
 | |
|         Args:
 | |
|             fd_config (FDConfig): Arguments related to inference, containing
 | |
|                 attributes such as weight_dtype, act_dtype, mp_size, hidden_size, head_dim,
 | |
|                 num_attention_heads, and ffn_hidden_size.
 | |
|             num_embeddings (int)  : vocabulary size.
 | |
|             embedding_dim (int) : size of hidden state.
 | |
|             params_dtype  (str) : data type of parameters.
 | |
|             prefix (str): The name of current layer. Defaults to "".
 | |
|         """
 | |
|         super().__init__()
 | |
|         self.fd_config = fd_config
 | |
|         hcg = fleet.get_hybrid_communicate_group()
 | |
|         self.mp_rank: int = hcg.get_model_parallel_rank()
 | |
|         self.column_cut = False
 | |
|         self.world_size: int = hcg.get_model_parallel_world_size()
 | |
|         self.ring_id: int = hcg.get_model_parallel_group().id
 | |
|         self.use_rope: bool = fd_config.model_config.use_rope
 | |
|         self.use_ep: bool = fd_config.parallel_config.use_ep
 | |
|         self.hidden_dropout_prob: float = fd_config.model_config.hidden_dropout_prob
 | |
|         self.initializer_range: float = fd_config.model_config.initializer_range
 | |
|         self.max_position_embeddings: int = fd_config.model_config.max_position_embeddings
 | |
|         self.tie_word_embeddings: bool = fd_config.model_config.tie_word_embeddings
 | |
|         self.params_dtype: str = params_dtype
 | |
| 
 | |
|         if self.use_ep:
 | |
|             self.embeddings = nn.Embedding(
 | |
|                 num_embeddings,
 | |
|                 embedding_dim,
 | |
|             )
 | |
|         else:
 | |
|             if not self.column_cut:
 | |
|                 self.embeddings = fleet.meta_parallel.VocabParallelEmbedding(
 | |
|                     num_embeddings,
 | |
|                     embedding_dim,
 | |
|                     mp_group=fleet.get_hybrid_communicate_group().
 | |
|                     get_model_parallel_group(),
 | |
|                     weight_attr=paddle.ParamAttr(
 | |
|                         initializer=nn.initializer.Normal(
 | |
|                             mean=0.0, std=self.initializer_range), ),
 | |
|                 )
 | |
|             else:
 | |
|                 # column cut embedding
 | |
|                 self.embeddings = nn.Embedding(
 | |
|                     num_embeddings,
 | |
|                     embedding_dim // self.world_size,
 | |
|                 )
 | |
| 
 | |
|                 self.embeddings.weight.is_distributed = True
 | |
|                 self.embeddings.weight.split_axis = 1
 | |
| 
 | |
|         if not self.use_rope:
 | |
|             self.position_embeddings = nn.Embedding(
 | |
|                 self.max_position_embeddings,
 | |
|                 embedding_dim,
 | |
|                 weight_attr=paddle.ParamAttr(initializer=nn.initializer.Normal(
 | |
|                     mean=0.0, std=self.initializer_range), ),
 | |
|             )
 | |
| 
 | |
|         self.prefix = prefix
 | |
|         self.dropout = nn.Dropout(self.hidden_dropout_prob)
 | |
| 
 | |
|     def load_state_dict(self, state_dict: Dict[str,
 | |
|                                                paddle.Tensor | np.ndarray]):
 | |
|         """
 | |
|         Load the checkpoint state dictionary into the layer.
 | |
| 
 | |
|         Args:
 | |
|             state_dict (dict): A dictionary containing the checkpoint weights and biases.
 | |
|         """
 | |
|         if self.tie_word_embeddings:
 | |
|             self.embeddings.weight.set_value(
 | |
|                 get_tensor(state_dict[self.prefix + ".weight"]).astype(
 | |
|                     paddle.get_default_dtype()))
 | |
|         else:
 | |
|             self.embeddings.weight.set_value(
 | |
|                 get_tensor(state_dict.pop(self.prefix + ".weight")).astype(
 | |
|                     paddle.get_default_dtype()))
 | |
| 
 | |
|     def forward(self, ids_remove_padding=None) -> paddle.Tensor:
 | |
|         """
 | |
|         Defines the forward computation of the layer.
 | |
| 
 | |
|         Args:
 | |
|             ids_remove_padding (Tensor, optional): Tensor of token IDs, with padding removed.
 | |
|                 If None, no input is provided.
 | |
| 
 | |
|         Returns:
 | |
|             Tensor: Embedded tensor representation of the input IDs.
 | |
|         """
 | |
|         if self.use_ep:
 | |
|             input_embedings = self.embeddings(ids_remove_padding)
 | |
|         else:
 | |
|             if self.column_cut:
 | |
|                 input_embedings = self.embeddings(ids_remove_padding)
 | |
|                 inputs_embeds_temp = []
 | |
|                 paddle.distributed.all_gather(
 | |
|                     inputs_embeds_temp,
 | |
|                     input_embedings,
 | |
|                     group=fleet.get_hybrid_communicate_group().
 | |
|                     get_model_parallel_group(),
 | |
|                     sync_op=True,
 | |
|                 )
 | |
|                 input_embedings = paddle.concat(inputs_embeds_temp, -1)
 | |
|             else:
 | |
|                 input_embedings = self.embeddings(ids_remove_padding)
 | |
| 
 | |
|         return input_embedings
 | 
