mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-25 09:31:38 +08:00 
			
		
		
		
	 c8db4b442a
			
		
	
	c8db4b442a
	
	
	
		
			
			* add onnx_ort_runtime demo * rm in requirements * support batch eval * fixed MattingResults bug * move assignment for DetectionResult * integrated x2paddle * add model convert readme * update readme * re-lint * add processor api * Add MattingResult Free * change valid_cpu_backends order * add ppocr benchmark * mv bs from 64 to 32 * fixed quantize.md * fixed quantize bugs * Add Monitor for benchmark * update mem monitor * Set trt_max_batch_size default 1 * fixed ocr benchmark bug * support yolov5 in serving * Fixed yolov5 serving * Fixed postprocess * update yolov5 to 7.0 * add poros runtime demos * update readme * Support poros abi=1 * rm useless note * deal with comments Co-authored-by: Jason <jiangjiajun@baidu.com>
		
			
				
	
	
		
			63 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			63 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| from fastdeploy import ModelFormat
 | |
| 
 | |
| import fastdeploy as fd
 | |
| import numpy as np
 | |
| 
 | |
| 
 | |
| def load_example_input_datas():
 | |
|     """prewarm datas"""
 | |
|     data_list = []
 | |
|     # max size
 | |
|     input_1 = np.ones((1, 3, 224, 224), dtype=np.float32)
 | |
|     max_inputs = [input_1]
 | |
|     data_list.append(tuple(max_inputs))
 | |
| 
 | |
|     # min size
 | |
|     input_1 = np.ones((1, 3, 224, 224), dtype=np.float32)
 | |
|     min_inputs = [input_1]
 | |
|     data_list.append(tuple(min_inputs))
 | |
| 
 | |
|     # opt size
 | |
|     input_1 = np.ones((1, 3, 224, 224), dtype=np.float32)
 | |
|     opt_inputs = [input_1]
 | |
|     data_list.append(tuple(opt_inputs))
 | |
| 
 | |
|     return data_list
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     # prewarm_datas
 | |
|     prewarm_datas = load_example_input_datas()
 | |
|     # download model
 | |
|     model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/std_resnet50_script.pt"
 | |
|     fd.download(model_url, path=".")
 | |
| 
 | |
|     option = fd.RuntimeOption()
 | |
|     option.use_gpu(0)
 | |
|     option.use_poros_backend()
 | |
|     option.set_model_path(
 | |
|         "std_resnet50_script.pt", model_format=ModelFormat.TORCHSCRIPT)
 | |
|     option.is_dynamic = True
 | |
|     # compile
 | |
|     runtime = fd.Runtime(option)
 | |
|     runtime.compile(prewarm_datas)
 | |
| 
 | |
|     # infer
 | |
|     input_data_0 = np.random.rand(1, 3, 224, 224).astype("float32")
 | |
|     result = runtime.forward(input_data_0)
 | |
|     print(result[0].shape)
 |