mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-25 09:31:38 +08:00 
			
		
		
		
	 0dd9ecee65
			
		
	
	0dd9ecee65
	
	
	
		
			
			* Support PPYOLOE plus model * Optimize ocr system code * modify example code * fix patchelf of openvino * optimize demo code of ocr * remove debug code * update demo code of ocr Co-authored-by: Jack Zhou <zhoushunjie@baidu.com>
		
			
				
	
	
		
			43 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			43 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| import fastdeploy as fd
 | |
| import numpy as np
 | |
| 
 | |
| # 下载模型并解压
 | |
| model_url = "https://bj.bcebos.com/fastdeploy/models/mobilenetv2.tgz"
 | |
| fd.download_and_decompress(model_url)
 | |
| 
 | |
| option = fd.RuntimeOption()
 | |
| 
 | |
| option.set_model_path("mobilenetv2/inference.pdmodel",
 | |
|                       "mobilenetv2/inference.pdiparams")
 | |
| 
 | |
| option.use_cpu()
 | |
| option.use_openvino_backend()
 | |
| option.set_cpu_thread_num(12)
 | |
| 
 | |
| # 初始化构造runtime
 | |
| runtime = fd.Runtime(option)
 | |
| 
 | |
| # 获取模型输入名
 | |
| input_name = runtime.get_input_info(0).name
 | |
| 
 | |
| # 构造随机数据进行推理
 | |
| results = runtime.infer({
 | |
|     input_name: np.random.rand(1, 3, 224, 224).astype("float32")
 | |
| })
 | |
| 
 | |
| print(results[0].shape)
 |