mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* Update README.md * Update README.md * Update README.md * Create README.md * Update README.md * Update README.md * Update README.md * Update README.md * Add evaluation calculate time and fix some bugs * Update classification __init__ * Move to ppseg Co-authored-by: Jason <jiangjiajun@baidu.com>
138 lines
4.5 KiB
C++
138 lines
4.5 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
#include <set>
|
|
#include <vector>
|
|
#include "fastdeploy/core/fd_tensor.h"
|
|
#include "fastdeploy/utils/utils.h"
|
|
#include "fastdeploy/vision/common/result.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace utils {
|
|
// topk sometimes is a very small value
|
|
// so this implementation is simple but I don't think it will
|
|
// cost too much time
|
|
// Also there may be cause problem since we suppose the minimum value is
|
|
// -99999999
|
|
// Do not use this function on array which topk contains value less than
|
|
// -99999999
|
|
template <typename T>
|
|
std::vector<int32_t> TopKIndices(const T* array, int array_size, int topk) {
|
|
topk = std::min(array_size, topk);
|
|
std::vector<int32_t> res(topk);
|
|
std::set<int32_t> searched;
|
|
for (int32_t i = 0; i < topk; ++i) {
|
|
T min = -99999999;
|
|
for (int32_t j = 0; j < array_size; ++j) {
|
|
if (searched.find(j) != searched.end()) {
|
|
continue;
|
|
}
|
|
if (*(array + j) > min) {
|
|
res[i] = j;
|
|
min = *(array + j);
|
|
}
|
|
}
|
|
searched.insert(res[i]);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
template <typename T>
|
|
void ArgmaxScoreMap(T infer_result_buffer, SegmentationResult* result,
|
|
bool with_softmax) {
|
|
int64_t height = result->shape[0];
|
|
int64_t width = result->shape[1];
|
|
int64_t num_classes = result->shape[2];
|
|
int index = 0;
|
|
for (size_t i = 0; i < height; ++i) {
|
|
for (size_t j = 0; j < width; ++j) {
|
|
int64_t s = (i * width + j) * num_classes;
|
|
T max_class_score = std::max_element(
|
|
infer_result_buffer + s, infer_result_buffer + s + num_classes);
|
|
int label_id = std::distance(infer_result_buffer + s, max_class_score);
|
|
if (label_id >= 255) {
|
|
FDWARNING << "label_id is stored by uint8_t, now the value is bigger "
|
|
"than 255, it's "
|
|
<< static_cast<int>(label_id) << "." << std::endl;
|
|
}
|
|
result->label_map[index] = static_cast<uint8_t>(label_id);
|
|
|
|
if (with_softmax) {
|
|
double_t total = 0;
|
|
for (int k = 0; k < num_classes; k++) {
|
|
total += exp(*(infer_result_buffer + s + k) - *max_class_score);
|
|
}
|
|
double_t softmax_class_score = 1 / total;
|
|
result->score_map[index] = static_cast<float>(softmax_class_score);
|
|
|
|
} else {
|
|
result->score_map[index] = static_cast<float>(*max_class_score);
|
|
}
|
|
index++;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void NCHW2NHWC(FDTensor& infer_result) {
|
|
T* infer_result_buffer = reinterpret_cast<T*>(infer_result.MutableData());
|
|
int num = infer_result.shape[0];
|
|
int channel = infer_result.shape[1];
|
|
int height = infer_result.shape[2];
|
|
int width = infer_result.shape[3];
|
|
int chw = channel * height * width;
|
|
int wc = width * channel;
|
|
int wh = width * height;
|
|
std::vector<T> hwc_data(chw);
|
|
int index = 0;
|
|
for (int n = 0; n < num; n++) {
|
|
for (int c = 0; c < channel; c++) {
|
|
for (int h = 0; h < height; h++) {
|
|
for (int w = 0; w < width; w++) {
|
|
hwc_data[n * chw + h * wc + w * channel + c] =
|
|
*(infer_result_buffer + index);
|
|
index++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
std::memcpy(infer_result.MutableData(), hwc_data.data(),
|
|
num * chw * sizeof(T));
|
|
infer_result.shape = {num, height, width, channel};
|
|
}
|
|
|
|
void NMS(DetectionResult* output, float iou_threshold = 0.5);
|
|
|
|
void NMS(FaceDetectionResult* result, float iou_threshold = 0.5);
|
|
|
|
// MergeSort
|
|
void SortDetectionResult(DetectionResult* output);
|
|
|
|
void SortDetectionResult(FaceDetectionResult* result);
|
|
|
|
// L2 Norm / cosine similarity (for face recognition, ...)
|
|
FASTDEPLOY_DECL std::vector<float> L2Normalize(
|
|
const std::vector<float>& values);
|
|
|
|
FASTDEPLOY_DECL float CosineSimilarity(const std::vector<float>& a,
|
|
const std::vector<float>& b,
|
|
bool normalized = true);
|
|
|
|
} // namespace utils
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|