Files
FastDeploy/fastdeploy/envs.py
ltd0924 31d4fcb425
Some checks failed
Deploy GitHub Pages / deploy (push) Has been cancelled
[BugFix] fix too many open files problem (#3256)
* Update cache_messager.py

* fix too many open files problem

* fix too many open files problem

* fix too many open files problem

* fix ci bugs

* Update api_server.py

* add parameter

* format

* format

* format

* format

* Update parameters.md

* Update parameters.md

* Update serving_completion.py

* Update serving_chat.py

* Update envs.py

---------

Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
2025-08-08 20:10:11 +08:00

101 lines
5.0 KiB
Python

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Environment variables used by FastDeploy.
"""
import os
from typing import Any, Callable
environment_variables: dict[str, Callable[[], Any]] = {
# Whether to use BF16 on CPU.
"FD_CPU_USE_BF16": lambda: os.getenv("FD_CPU_USE_BF16", "False"),
# Cuda architecture to build FastDeploy.This is a list of strings
# such as [80,90].
"FD_BUILDING_ARCS": lambda: os.getenv("FD_BUILDING_ARCS", "[]"),
# Log directory.
"FD_LOG_DIR": lambda: os.getenv("FD_LOG_DIR", "log"),
# Whether to use debug mode, can set 0 or 1
"FD_DEBUG": lambda: os.getenv("FD_DEBUG", "0"),
# Number of days to keep fastdeploy logs.
"FD_LOG_BACKUP_COUNT": lambda: os.getenv("FD_LOG_BACKUP_COUNT", "7"),
# Model download source, can set "AISTUDIO", "MODELSCOPE" or "HUGGINGFACE".
"FD_MODEL_SOURCE": lambda: os.getenv("FD_MODEL_SOURCE", "AISTUDIO"),
# Model download cache directory.
"FD_MODEL_CACHE": lambda: os.getenv("FD_MODEL_CACHE", None),
# Maximum number of stop sequences.
"FD_MAX_STOP_SEQS_NUM": lambda: os.getenv("FD_MAX_STOP_SEQS_NUM", "5"),
# Maximum length of stop sequences.
"FD_STOP_SEQS_MAX_LEN": lambda: os.getenv("FD_STOP_SEQS_MAX_LEN", "8"),
# GPU devices that will be used. This is a string that
# splited by comma, such as 0,1,2.
"CUDA_VISIBLE_DEVICES": lambda: os.getenv("CUDA_VISIBLE_DEVICES", None),
# Whether to use HuggingFace tokenizer.
"FD_USE_HF_TOKENIZER": lambda: os.getenv("FD_USE_HF_TOKENIZER", 0),
# Set the high watermark (HWM) for receiving data during ZMQ initialization
"FD_ZMQ_SNDHWM": lambda: os.getenv("FD_ZMQ_SNDHWM", 10000),
# cache kv quant params directory
"FD_CACHE_PARAMS": lambda: os.getenv("FD_CACHE_PARAMS", "none"),
# Set attention backend. "NATIVE_ATTN", "APPEND_ATTN"
# and "MLA_ATTN" can be set currently.
"FD_ATTENTION_BACKEND": lambda: os.getenv("FD_ATTENTION_BACKEND", "APPEND_ATTN"),
# Set sampling class. "base", "base_non_truncated", "air" and "rejection" can be set currently.
"FD_SAMPLING_CLASS": lambda: os.getenv("FD_SAMPLING_CLASS", "base"),
# Set moe backend."cutlass","marlin" and "triton" can be set currently.
"FD_MOE_BACKEND": lambda: os.getenv("FD_MOE_BACKEND", "cutlass"),
# Set whether to disable recompute the request when the KV cache is full.
"FD_DISABLED_RECOVER": lambda: os.getenv("FD_DISABLED_RECOVER", "0"),
# Set triton kernel JIT compilation directory.
"FD_TRITON_KERNEL_CACHE_DIR": lambda: os.getenv("FD_TRITON_KERNEL_CACHE_DIR", None),
# Whether transition from standalone PD decoupling to centralized inference
"FD_PD_CHANGEABLE": lambda: os.getenv("FD_PD_CHANGEABLE", "0"),
# Whether to use fastsafetensor load weight (0 or 1)
"FD_USE_FASTSAFETENSOR": lambda: os.getenv("FD_USE_FASTSAFETENSOR", "0"),
# Whether to use DeepGemm for FP8 blockwise MoE.
"FD_USE_DEEP_GEMM": lambda: bool(int(os.getenv("FD_USE_DEEP_GEMM", "1"))),
# Whether to use aggregate send.
"FD_USE_AGGREGATE_SEND": lambda: bool(int(os.getenv("FD_USE_AGGREGATE_SEND", "0"))),
# Whether to open Trace.
"TRACES_ENABLE": lambda: os.getenv("TRACES_ENABLE", "false"),
# set traec Server name.
"FD_SERVICE_NAME": lambda: os.getenv("FD_SERVICE_NAME", "FastDeploy"),
# set traec host name.
"FD_HOST_NAME": lambda: os.getenv("FD_HOST_NAME", "localhost"),
# set traec exporter.
"TRACES_EXPORTER": lambda: os.getenv("TRACES_EXPORTER", "console"),
# set traec exporter_otlp_endpoint.
"EXPORTER_OTLP_ENDPOINT": lambda: os.getenv("EXPORTER_OTLP_ENDPOINT"),
# set traec exporter_otlp_headers.
"EXPORTER_OTLP_HEADERS": lambda: os.getenv("EXPORTER_OTLP_HEADERS"),
# enable kv cache block scheduler v1 (no need for kv_cache_ratio)
"ENABLE_V1_KVCACHE_SCHEDULER": lambda: int(os.getenv("ENABLE_V1_KVCACHE_SCHEDULER", "0")),
# Whether to use PLUGINS.
"FD_PLUGINS": lambda: None if "FD_PLUGINS" not in os.environ else os.environ["FD_PLUGINS"].split(","),
# set trace attribute job_id.
"FD_JOB_ID": lambda: os.getenv("FD_JOB_ID"),
# support max connections
"FD_SUPPORT_MAX_CONNECTIONS": lambda: 768,
}
def __getattr__(name: str):
# lazy evaluation of environment variables
if name in environment_variables:
return environment_variables[name]()
raise AttributeError(f"module {__name__!r} has no attribute {name!r}")
def __dir__():
return list(environment_variables.keys())