Files
FastDeploy/tests/operators/test_tritonmoe_preprocess.py
Echo-Nie 9845f0d010 【Hackathon 9th No.30】add test_tritonmoe_preprocess (#3891)
* add test_tritonmoe_preprocess

* add value check

* del test_support_all...
2025-09-22 15:31:32 +08:00

121 lines
4.2 KiB
Python

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
from fastdeploy.model_executor.ops.gpu import tritonmoe_preprocess
class TestTritonMOEPreprocess(unittest.TestCase):
def setUp(self):
paddle.set_device("gpu")
np.random.seed(42)
def _run_op(self, topk_ids_np, num_experts, GEMM_BLOCK_SIZE_M):
"""Convert numpy to Paddle Tensor and run operator"""
topk_ids = paddle.to_tensor(topk_ids_np, dtype="int64")
sorted_ids, expert_ids, num_tokens_post_pad = tritonmoe_preprocess(topk_ids, num_experts, GEMM_BLOCK_SIZE_M)
return sorted_ids.numpy(), expert_ids.numpy(), num_tokens_post_pad.numpy()
def _check_output_shapes(
self, sorted_ids, expert_ids, num_tokens_post_pad, topk_ids_np, num_experts, GEMM_BLOCK_SIZE_M
):
"""Check output shapes and dtypes"""
expected_max_num_tokens_padded = topk_ids_np.size + num_experts * (GEMM_BLOCK_SIZE_M - 1)
self.assertEqual(sorted_ids.shape[0], expected_max_num_tokens_padded)
expected_max_num_m_blocks = expected_max_num_tokens_padded // GEMM_BLOCK_SIZE_M
self.assertEqual(expert_ids.shape[0], expected_max_num_m_blocks)
self.assertEqual(num_tokens_post_pad.shape[0], 1)
self.assertTrue(sorted_ids.dtype == np.int32)
self.assertTrue(expert_ids.dtype == np.int32)
self.assertTrue(num_tokens_post_pad.dtype == np.int32)
def _check_output_values_basic(self, sorted_ids, expert_ids, num_tokens_post_pad):
"""Check expected values for the fixed example"""
expected_sorted_ids = np.array(
[
8,
12,
16,
16,
4,
9,
15,
16,
5,
10,
14,
16,
6,
11,
13,
16,
3,
7,
16,
16,
2,
16,
16,
16,
1,
16,
16,
16,
0,
16,
16,
16,
],
dtype=np.int32,
)
np.testing.assert_array_equal(sorted_ids[: len(expected_sorted_ids)], expected_sorted_ids)
expected_expert_ids = np.array([0, 1, 2, 3, 4, 5, 6, 7], dtype=np.int32)
np.testing.assert_array_equal(expert_ids[: len(expected_expert_ids)], expected_expert_ids)
self.assertTrue(num_tokens_post_pad[0] % 4 == 0)
def test_basic_case(self):
"""Basic fixed example test"""
num_experts = 8
GEMM_BLOCK_SIZE_M = 4
topk_ids_np = np.array([[7, 6, 5, 4], [1, 2, 3, 4], [0, 1, 2, 3], [0, 3, 2, 1]], dtype=np.int64)
sorted_ids, expert_ids, num_tokens_post_pad = self._run_op(topk_ids_np, num_experts, GEMM_BLOCK_SIZE_M)
self._check_output_shapes(
sorted_ids, expert_ids, num_tokens_post_pad, topk_ids_np, num_experts, GEMM_BLOCK_SIZE_M
)
self._check_output_values_basic(sorted_ids, expert_ids, num_tokens_post_pad)
def test_unsupported_num_experts(self):
"""Test unsupported num_experts raises OSError"""
topk_ids_np = np.array([[0, 1], [1, 0]], dtype=np.int64)
unsupported_experts = [3, 9, 65, 129]
GEMM_BLOCK_SIZE_M = 4
for num_experts in unsupported_experts:
with self.subTest(num_experts=num_experts):
with self.assertRaises(OSError):
self._run_op(topk_ids_np, num_experts, GEMM_BLOCK_SIZE_M)
if __name__ == "__main__":
unittest.main()