mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 01:22:59 +08:00

* support pool * update pooling * add pooler_config and check * update * support AutoWeightsLoader load weight * fix * update * delete print * update pre-commit * fix * fix xpu * fix ModelRegistry->model_registry * fix Copilot review * fix pooler.py * delete StepPooler * fix abstract * fix default_loader_v1 * fix Pre Commit * support torch qwen3 dense * add test and fix torch-qwen * fix * fix * adapter ci: * fix review * fix pooling_params.py * fix * fix tasks.py 2025 * fix print and logger * Modefy ModelRegistry and delete AutoWeightsLoader * fix logger * fix test_embedding * fix ci bug * ernie4_5 model_registry * fix test * support Qwen3-Embedding-0.6B tp=1 load * fix extra code * fix * delete fix vocab_size * delete prepare_params_dict * fix:
55 lines
1.9 KiB
Python
55 lines
1.9 KiB
Python
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from typing import Type
|
|
|
|
from paddle import nn
|
|
|
|
|
|
def is_text_generation_model(model_cls: Type[nn.Layer]) -> bool:
|
|
from .model_base import ModelForCasualLM
|
|
|
|
return issubclass(model_cls, ModelForCasualLM)
|
|
|
|
|
|
def is_pooling_model(model_cls: Type[nn.Layer]) -> bool:
|
|
class_name = model_cls.__name__
|
|
pooling_indicators = ["Embedding", "ForSequenceClassification"]
|
|
return (
|
|
any(indicator in class_name for indicator in pooling_indicators)
|
|
or hasattr(model_cls, "is_embedding_model")
|
|
and model_cls.is_embedding_model
|
|
)
|
|
|
|
|
|
def is_multimodal_model(class_name: str) -> bool:
|
|
multimodal_indicators = ["VL", "Vision", "ConditionalGeneration"]
|
|
return any(indicator in class_name for indicator in multimodal_indicators)
|
|
|
|
|
|
def determine_model_category(class_name: str):
|
|
from fastdeploy.model_executor.models.model_base import ModelCategory
|
|
|
|
if any(pattern in class_name for pattern in ["VL", "Vision", "ConditionalGeneration"]):
|
|
return ModelCategory.MULTIMODAL
|
|
elif any(pattern in class_name for pattern in ["Embedding", "ForSequenceClassification"]):
|
|
return ModelCategory.EMBEDDING
|
|
return ModelCategory.TEXT_GENERATION
|
|
|
|
|
|
def get_default_pooling_type(model_cls: Type[nn.Layer] = None) -> str:
|
|
if model_cls is not None:
|
|
return getattr(model_cls, "default_pooling_type", "LAST")
|
|
return "LAST"
|