mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-02 23:32:48 +08:00

* qk norm for speculate decode C16 * support mtp in v1_scheduler mode * support mtp rope_3d * support mtp features * add unit test && del some log --------- Co-authored-by: yuanxiaolan <yuanxiaolan01@baidu.com> Co-authored-by: xiaoxiaohehe001 <hiteezsf@163.com>
383 lines
16 KiB
Python
383 lines
16 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
import os
|
|
from dataclasses import dataclass, field
|
|
from typing import TYPE_CHECKING, List, Optional
|
|
|
|
import paddle
|
|
|
|
from fastdeploy.model_executor.layers.attention.ops import (
|
|
append_attention,
|
|
append_attention_with_output,
|
|
get_block_shape_and_split_kv_block,
|
|
init_kv_signal_per_query,
|
|
init_signal_layerwise,
|
|
open_shm_and_get_meta_signal,
|
|
)
|
|
|
|
if TYPE_CHECKING:
|
|
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
|
|
|
from fastdeploy.config import FDConfig
|
|
from fastdeploy.model_executor.layers.attention.attention import Attention
|
|
from fastdeploy.model_executor.layers.attention.base_attention_backend import (
|
|
AttentionBackend,
|
|
AttentionMetadata,
|
|
)
|
|
from fastdeploy.model_executor.layers.attention.utils import init_rank_and_device_id
|
|
|
|
|
|
@dataclass
|
|
class AppendAttentionMetadata(AttentionMetadata):
|
|
"""
|
|
AppendAttentionMetadata
|
|
"""
|
|
|
|
encoder_batch_ids: paddle.Tensor = None
|
|
encoder_tile_ids_per_batch: paddle.Tensor = None
|
|
encoder_num_blocks: paddle.Tensor = None
|
|
kv_batch_ids: paddle.Tensor = None
|
|
kv_tile_ids_per_batch: paddle.Tensor = None
|
|
kv_num_blocks: paddle.Tensor = None
|
|
max_len_kv: paddle.Tensor = None
|
|
|
|
_dtype: paddle.dtype = paddle.bfloat16
|
|
encoder_max_partition_size: int = 32768
|
|
max_partition_size: int = 32768
|
|
block_tables: Optional[paddle.Tensor] = None
|
|
rotary_embs: Optional[paddle.Tensor] = None
|
|
attn_mask: Optional[paddle.Tensor] = None
|
|
_fuse_kernel_compute_dtype: str = "bf16"
|
|
|
|
# pd_disaggregation
|
|
kv_signal_metadata: Optional[paddle.Tensor] = None
|
|
kv_signal_data_list: List[Optional[paddle.Tensor]] = field(default_factory=list)
|
|
|
|
|
|
class AppendAttentionBackend(AttentionBackend):
|
|
"""
|
|
AppendAttentionBackend backend implementation.
|
|
"""
|
|
|
|
__infer_dynamic_dims_fields__ = ["attention_metadata"]
|
|
attention_metadata: AppendAttentionMetadata
|
|
|
|
def __init__(
|
|
self,
|
|
fd_config: FDConfig,
|
|
kv_num_heads: int,
|
|
num_heads: int,
|
|
head_dim: int,
|
|
encoder_block_shape_q: int = -1,
|
|
decoder_block_shape_q: int = -1,
|
|
) -> None:
|
|
"""
|
|
AppendAttentionBackend __init__
|
|
"""
|
|
super().__init__()
|
|
self.attention_metadata: AppendAttentionMetadata = None
|
|
self.block_size: int = fd_config.cache_config.block_size
|
|
self.max_seq_len: int = fd_config.parallel_config.max_model_len
|
|
self.rope_theta: float = (
|
|
10000.0 if fd_config.model_config.rope_theta is None else fd_config.model_config.rope_theta
|
|
)
|
|
self.rope_3d: bool = getattr(fd_config.model_config, "rope_3d", False) or getattr(
|
|
fd_config.model_config, "use_3d_rope", False
|
|
)
|
|
if fd_config.speculative_config.model_type != "main":
|
|
self.rope_3d = False
|
|
self.causal: bool = getattr(fd_config.model_config, "causal", True)
|
|
self.speculative_method: str = fd_config.speculative_config.method
|
|
self.use_speculate: bool = self.speculative_method is not None
|
|
self.speculate_max_draft_token_num: int = fd_config.speculative_config.num_speculative_tokens
|
|
self.keep_pd_step_flag: bool = fd_config.speculative_config.model_type == "mtp"
|
|
self.num_layers_draft_model: int = int(fd_config.speculative_config.method in ["mtp"])
|
|
|
|
self.kv_num_heads: int = kv_num_heads
|
|
self.num_heads: int = num_heads
|
|
self.group_size: int = self.num_heads // self.kv_num_heads
|
|
self.head_dim: int = fd_config.model_config.head_dim
|
|
self.num_layers: int = fd_config.model_config.num_hidden_layers
|
|
self.max_partition_size: int = int(os.getenv("FLAGS_max_partition_size", 1024))
|
|
self.encoder_block_shape_q: int = encoder_block_shape_q
|
|
self.decoder_block_shape_q: int = decoder_block_shape_q
|
|
|
|
self.pd_disaggregation_mode: str = fd_config.parallel_config.pd_disaggregation_mode
|
|
|
|
self.start_layer_index: int = fd_config.model_config.start_layer_index
|
|
|
|
if fd_config.parallel_config.expert_parallel_rank is None:
|
|
fd_config.parallel_config.expert_parallel_rank = 0
|
|
|
|
self.rank, self.device_id = init_rank_and_device_id(fd_config)
|
|
self.use_output = not fd_config.graph_opt_config.full_cuda_graph
|
|
|
|
def init_attention_metadata(self, forward_meta: ForwardMeta):
|
|
"""Initialize attntion metadata hence all layers in the forward pass can reuse it."""
|
|
metadata = AppendAttentionMetadata()
|
|
metadata.max_partition_size = self.max_partition_size
|
|
metadata.encoder_max_partition_size = self.max_seq_len
|
|
metadata._dtype = paddle.get_default_dtype()
|
|
if metadata._dtype == "bfloat16":
|
|
metadata._fuse_kernel_compute_dtype = "bf16"
|
|
elif metadata._dtype == "float16":
|
|
metadata._fuse_kernel_compute_dtype = "fp16"
|
|
elif metadata._dtype == "float32":
|
|
metadata._fuse_kernel_compute_dtype = "fp32"
|
|
metadata.block_tables = forward_meta.block_tables
|
|
metadata.rotary_embs = forward_meta.rotary_embs
|
|
metadata.attn_mask = forward_meta.attn_mask
|
|
metadata.pre_caches_length = forward_meta.pre_caches_length
|
|
(
|
|
metadata.encoder_batch_ids,
|
|
metadata.encoder_tile_ids_per_batch,
|
|
metadata.encoder_num_blocks,
|
|
metadata.kv_batch_ids,
|
|
metadata.kv_tile_ids_per_batch,
|
|
metadata.kv_num_blocks,
|
|
metadata.max_len_kv,
|
|
) = get_block_shape_and_split_kv_block(
|
|
forward_meta.seq_lens_encoder,
|
|
forward_meta.seq_lens_decoder,
|
|
forward_meta.seq_lens_this_time,
|
|
forward_meta.decoder_batch_ids,
|
|
forward_meta.decoder_tile_ids_per_batch,
|
|
forward_meta.decoder_num_blocks_cpu,
|
|
forward_meta.max_len_tensor_cpu,
|
|
self.encoder_block_shape_q,
|
|
self.decoder_block_shape_q,
|
|
self.group_size,
|
|
self.block_size,
|
|
self.speculate_max_draft_token_num + 1,
|
|
)
|
|
|
|
# pd_disaggregation
|
|
metadata.kv_signal_data_list = [None] * self.num_layers
|
|
if self.pd_disaggregation_mode == "per_chunk":
|
|
if not self.keep_pd_step_flag:
|
|
init_kv_signal_per_query(
|
|
forward_meta.seq_lens_encoder,
|
|
forward_meta.seq_lens_this_time,
|
|
forward_meta.seq_lens_decoder,
|
|
self.rank,
|
|
self.num_layers + self.num_layers_draft_model,
|
|
)
|
|
elif self.pd_disaggregation_mode == "per_query":
|
|
metadata.kv_signal_metadata = open_shm_and_get_meta_signal(
|
|
self.rank, int(self.device_id), self.keep_pd_step_flag
|
|
)
|
|
|
|
self.attention_metadata: AttentionMetadata = metadata
|
|
|
|
def get_attntion_meta(self) -> AttentionMetadata:
|
|
"""get_attntion_meta"""
|
|
return self.attention_metadata
|
|
|
|
def get_kv_cache_shape(
|
|
self,
|
|
max_num_blocks: int,
|
|
kv_cache_quant_type: str = None,
|
|
):
|
|
"""
|
|
Caculate kv cache shape
|
|
"""
|
|
if kv_cache_quant_type is not None and kv_cache_quant_type == "int4_zp":
|
|
return (
|
|
max_num_blocks,
|
|
self.kv_num_heads,
|
|
self.block_size,
|
|
self.head_dim // 2,
|
|
)
|
|
else:
|
|
return (
|
|
max_num_blocks,
|
|
self.kv_num_heads,
|
|
self.block_size,
|
|
self.head_dim,
|
|
)
|
|
|
|
def forward_mixed(
|
|
self,
|
|
q: paddle.Tensor,
|
|
k: paddle.Tensor,
|
|
v: paddle.Tensor,
|
|
qkv: paddle.Tensor,
|
|
compressed_kv: paddle.Tensor,
|
|
k_pe: paddle.Tensor,
|
|
layer: Attention,
|
|
forward_meta: ForwardMeta,
|
|
) -> paddle.Tensor:
|
|
"""
|
|
forward_mixed
|
|
"""
|
|
metadata = self.attention_metadata
|
|
|
|
if self.pd_disaggregation_mode == "per_query":
|
|
metadata.kv_signal_data_list[layer.layer_id] = init_signal_layerwise(
|
|
metadata.kv_signal_metadata,
|
|
layer.layer_id + self.start_layer_index,
|
|
)
|
|
|
|
if self.use_output:
|
|
quant_max_bound = getattr(layer, "quant_max_bound", 0.0)
|
|
cache_quant_type = getattr(layer, "cache_quant_type_str", "none")
|
|
compute_type = metadata._fuse_kernel_compute_dtype
|
|
out_scale = getattr(layer, "out_scale", -1.0)
|
|
# 1. get output datatype
|
|
qkv_dtype = qkv.dtype
|
|
if qkv_dtype == paddle.float16:
|
|
D_type = paddle.float16
|
|
elif qkv_dtype == paddle.bfloat16:
|
|
D_type = paddle.bfloat16
|
|
elif qkv_dtype == paddle.int32:
|
|
if compute_type == "bf16":
|
|
D_type = paddle.bfloat16
|
|
elif compute_type == "fp16":
|
|
D_type = paddle.float16
|
|
else:
|
|
raise NotImplementedError("Only supported attr of qkv_type in ['float16', 'bfloat16'].")
|
|
else:
|
|
raise NotImplementedError("Only supported attr of qkv_type in ['float16', 'bfloat16', 'int32'].")
|
|
# 2.Extract related parameters
|
|
token_nums = qkv.shape[0]
|
|
head_dims = self.head_dim if cache_quant_type != "cache_int4_zp" else self.head_dim * 2
|
|
q_num_heads = self.num_heads
|
|
# 3. generate output tensor of different dtypes
|
|
if out_scale > 0.0:
|
|
if abs(quant_max_bound - 127) < 0.000001:
|
|
res = paddle.empty([token_nums, q_num_heads * head_dims], dtype="int8").to(qkv.place)
|
|
elif abs(quant_max_bound - 448) < 0.000001:
|
|
res = paddle.empty([token_nums, q_num_heads * head_dims], dtype="float8_e4m3fn").to(qkv.place)
|
|
else:
|
|
raise NotImplementedError("Only supported attr of quant_max_bound in ['127', '448'].")
|
|
else:
|
|
res = paddle.empty([token_nums, q_num_heads * head_dims], dtype=D_type).to(qkv.place)
|
|
|
|
append_attention_with_output(
|
|
qkv,
|
|
forward_meta.caches[2 * layer.layer_id],
|
|
forward_meta.caches[2 * layer.layer_id + 1],
|
|
forward_meta.seq_lens_encoder,
|
|
forward_meta.seq_lens_decoder,
|
|
forward_meta.seq_lens_this_time,
|
|
forward_meta.batch_id_per_token,
|
|
forward_meta.cu_seqlens_q,
|
|
metadata.block_tables,
|
|
metadata.encoder_batch_ids,
|
|
metadata.encoder_tile_ids_per_batch,
|
|
metadata.encoder_num_blocks,
|
|
metadata.kv_batch_ids,
|
|
metadata.kv_tile_ids_per_batch,
|
|
metadata.kv_num_blocks,
|
|
forward_meta.decoder_batch_ids,
|
|
forward_meta.decoder_tile_ids_per_batch,
|
|
forward_meta.decoder_num_blocks_cpu,
|
|
forward_meta.max_len_tensor_cpu,
|
|
metadata.max_len_kv,
|
|
res,
|
|
metadata.rotary_embs,
|
|
metadata.attn_mask,
|
|
layer.qkv_bias,
|
|
layer.qkv_scale,
|
|
getattr(layer, "cache_k_scale", None),
|
|
getattr(layer, "cache_v_scale", None),
|
|
getattr(layer, "cache_k_out_scale", None),
|
|
getattr(layer, "cache_v_out_scale", None),
|
|
getattr(layer, "cache_k_zp", None),
|
|
getattr(layer, "cache_v_zp", None),
|
|
layer.linear_shift,
|
|
layer.linear_smooth,
|
|
forward_meta.attn_mask_offsets,
|
|
metadata.kv_signal_data_list[layer.layer_id],
|
|
getattr(layer, "q_norm_weight", None),
|
|
getattr(layer, "k_norm_weight", None),
|
|
getattr(layer, "rms_norm_eps", 1e-6),
|
|
metadata._fuse_kernel_compute_dtype,
|
|
getattr(layer, "cache_quant_type_str", "none"),
|
|
layer.use_neox_rotary_style,
|
|
self.rope_3d,
|
|
self.max_seq_len,
|
|
getattr(layer, "quant_max_bound", 0.0),
|
|
getattr(layer, "quant_min_bound", 0.0),
|
|
getattr(layer, "out_scale", -1.0),
|
|
self.encoder_block_shape_q,
|
|
self.decoder_block_shape_q,
|
|
metadata.max_partition_size,
|
|
metadata.encoder_max_partition_size,
|
|
self.speculate_max_draft_token_num + 1,
|
|
self.causal,
|
|
self.speculative_method is not None,
|
|
)
|
|
else:
|
|
res = append_attention(
|
|
qkv,
|
|
forward_meta.caches[2 * layer.layer_id],
|
|
forward_meta.caches[2 * layer.layer_id + 1],
|
|
forward_meta.seq_lens_encoder,
|
|
forward_meta.seq_lens_decoder,
|
|
forward_meta.seq_lens_this_time,
|
|
forward_meta.batch_id_per_token,
|
|
forward_meta.cu_seqlens_q,
|
|
metadata.block_tables,
|
|
metadata.encoder_batch_ids,
|
|
metadata.encoder_tile_ids_per_batch,
|
|
metadata.encoder_num_blocks,
|
|
metadata.kv_batch_ids,
|
|
metadata.kv_tile_ids_per_batch,
|
|
metadata.kv_num_blocks,
|
|
forward_meta.decoder_batch_ids,
|
|
forward_meta.decoder_tile_ids_per_batch,
|
|
forward_meta.decoder_num_blocks_cpu,
|
|
forward_meta.max_len_tensor_cpu,
|
|
metadata.max_len_kv,
|
|
metadata.rotary_embs,
|
|
metadata.attn_mask,
|
|
layer.qkv_bias,
|
|
layer.qkv_scale,
|
|
getattr(layer, "cache_k_scale", None),
|
|
getattr(layer, "cache_v_scale", None),
|
|
getattr(layer, "cache_k_out_scale", None),
|
|
getattr(layer, "cache_v_out_scale", None),
|
|
getattr(layer, "cache_k_zp", None),
|
|
getattr(layer, "cache_v_zp", None),
|
|
layer.linear_shift,
|
|
layer.linear_smooth,
|
|
None if self.use_speculate else forward_meta.attn_mask_offsets,
|
|
metadata.kv_signal_data_list[layer.layer_id],
|
|
getattr(layer, "q_norm_weight", None),
|
|
getattr(layer, "k_norm_weight", None),
|
|
getattr(layer, "rms_norm_eps", 1e-6),
|
|
metadata._fuse_kernel_compute_dtype,
|
|
getattr(layer, "cache_quant_type_str", "none"),
|
|
layer.use_neox_rotary_style,
|
|
self.rope_3d,
|
|
self.max_seq_len,
|
|
getattr(layer, "quant_max_bound", 0.0),
|
|
getattr(layer, "quant_min_bound", 0.0),
|
|
getattr(layer, "out_scale", -1.0),
|
|
self.encoder_block_shape_q,
|
|
self.decoder_block_shape_q,
|
|
metadata.max_partition_size,
|
|
metadata.encoder_max_partition_size,
|
|
self.speculate_max_draft_token_num + 1,
|
|
self.causal or self.use_speculate,
|
|
self.speculative_method is not None,
|
|
)
|
|
return res
|