Files
FastDeploy/tests/metrics/test_new_metrics.py
qwes5s5 2ee91d7a96 [metrics] Add serveral observability metrics (#3868) (#4011)
* [metrics] Add serveral observability metrics (#3868)

* Add several observability metrics

* [wenxin-tools-584] 【可观测性】支持查看本节点的并发数、剩余block_size、排队请求数等信息

* adjust some metrics and md files

* trigger ci

* adjust ci file

* trigger ci

* trigger ci

---------

Co-authored-by: K11OntheBoat <your_email@example.com>
Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>

* version adjust

---------

Co-authored-by: K11OntheBoat <your_email@example.com>
Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
2025-09-10 10:59:57 +08:00

93 lines
3.9 KiB
Python

import unittest
from unittest.mock import MagicMock, patch
from fastdeploy.cache_manager.cache_metrics import CacheMetrics
from fastdeploy.output.token_processor import TokenProcessor
class TestCoverageFix(unittest.TestCase):
@patch("fastdeploy.cache_manager.cache_metrics.main_process_metrics")
def test_cache_metrics_update_history(self, mock_main_process_metrics):
"""
测试 CacheMetrics._update_history_hit_metrics 方法。
目标:确保 main_process_metrics 的 .set() 方法被正确调用,覆盖第 58-61 行。
"""
print("\nRunning test for CacheMetrics._update_history_hit_metrics...")
metrics = CacheMetrics()
# 准备数据以避免除零错误
metrics.req_count = 20
metrics.hit_req_count = 10
metrics.total_token_num = 1000
metrics.total_cpu_matched_token_num = 250
metrics.total_gpu_matched_token_num = 350
metrics.matched_token_num = metrics.total_cpu_matched_token_num + metrics.total_gpu_matched_token_num
# 调用目标方法
metrics._update_history_hit_metrics()
# 断言 Prometheus 指标的 set 方法是否被正确的值调用
mock_main_process_metrics.hit_req_rate.set.assert_called_once_with(0.5) # 10 / 20
mock_main_process_metrics.hit_token_rate.set.assert_called_once_with(0.6) # 600 / 1000
mock_main_process_metrics.cpu_hit_token_rate.set.assert_called_once_with(0.25) # 250 / 1000
mock_main_process_metrics.gpu_hit_token_rate.set.assert_called_once_with(0.35) # 350 / 1000
print("Test for CacheMetrics passed.")
def setUp(self):
"""为 TokenProcessor 测试设置通用的 mock 对象。"""
self.mock_cfg = MagicMock()
self.mock_cached_generated_tokens = MagicMock()
self.mock_engine_worker_queue = MagicMock()
self.mock_split_connector = MagicMock()
self.mock_resource_manager = MagicMock()
with patch("fastdeploy.output.token_processor.IPCSignal"):
self.processor = TokenProcessor(
cfg=self.mock_cfg,
cached_generated_tokens=self.mock_cached_generated_tokens,
engine_worker_queue=self.mock_engine_worker_queue,
split_connector=self.mock_split_connector,
)
self.processor.resource_manager = self.mock_resource_manager
# 使用 patch 来模拟 token_processor 模块中引用的 main_process_metrics
@patch("fastdeploy.output.token_processor.main_process_metrics")
def test_recycle_resources_updates_metrics(self, mock_main_process_metrics):
"""
测试 TokenProcessor._recycle_resources 方法。
目标:确保 available_batch_size 等指标被更新,覆盖第 285 行左右的代码。
"""
print("\nRunning test for TokenProcessor._recycle_resources (metric update)...")
# 1. 准备测试数据和 mock 行为
task_id = "request-456"
index = 0
mock_task = MagicMock()
# 配置 resource_manager 的 mock 返回值
self.mock_resource_manager.available_batch.return_value = 8
self.mock_resource_manager.total_block_number.return_value = 1024
self.mock_resource_manager.max_num_seqs = 16
# _recycle_resources 方法内部会操作这些列表/字典
self.mock_resource_manager.tasks_list = [mock_task]
self.mock_resource_manager.stop_flags = [False]
# 为了避免 del self.tokens_counter[task_id] 抛出 KeyError
self.processor.tokens_counter[task_id] = 5
# 调用目标方法
self.processor._recycle_resources(task_id=task_id, index=index, task=mock_task, result=None, is_prefill=False)
# 核心断言:验证 available_batch_size 指标是否被正确设置
mock_main_process_metrics.available_batch_size.set.assert_called_once_with(8)
print("Test for TokenProcessor passed.")
if __name__ == "__main__":
unittest.main()