mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* [metrics] Add serveral observability metrics (#3868) * Add several observability metrics * [wenxin-tools-584] 【可观测性】支持查看本节点的并发数、剩余block_size、排队请求数等信息 * adjust some metrics and md files * trigger ci * adjust ci file * trigger ci * trigger ci --------- Co-authored-by: K11OntheBoat <your_email@example.com> Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com> * version adjust --------- Co-authored-by: K11OntheBoat <your_email@example.com> Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
819 lines
29 KiB
Python
819 lines
29 KiB
Python
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
|
||
import concurrent.futures
|
||
import json
|
||
import os
|
||
import re
|
||
import shutil
|
||
import signal
|
||
import socket
|
||
import subprocess
|
||
import sys
|
||
import time
|
||
|
||
import openai
|
||
import pytest
|
||
import requests
|
||
from jsonschema import validate
|
||
|
||
# Read ports from environment variables; use default values if not set
|
||
FD_API_PORT = int(os.getenv("FD_API_PORT", 8188))
|
||
FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8133))
|
||
FD_METRICS_PORT = int(os.getenv("FD_METRICS_PORT", 8233))
|
||
FD_CACHE_QUEUE_PORT = int(os.getenv("FD_CACHE_QUEUE_PORT", 8333))
|
||
|
||
# List of ports to clean before and after tests
|
||
PORTS_TO_CLEAN = [FD_API_PORT, FD_ENGINE_QUEUE_PORT, FD_METRICS_PORT, FD_CACHE_QUEUE_PORT]
|
||
|
||
|
||
def is_port_open(host: str, port: int, timeout=1.0):
|
||
"""
|
||
Check if a TCP port is open on the given host.
|
||
Returns True if connection succeeds, False otherwise.
|
||
"""
|
||
try:
|
||
with socket.create_connection((host, port), timeout):
|
||
return True
|
||
except Exception:
|
||
return False
|
||
|
||
|
||
def kill_process_on_port(port: int):
|
||
"""
|
||
Kill processes that are listening on the given port.
|
||
Uses `lsof` to find process ids and sends SIGKILL.
|
||
"""
|
||
try:
|
||
output = subprocess.check_output(f"lsof -i:{port} -t", shell=True).decode().strip()
|
||
current_pid = os.getpid()
|
||
parent_pid = os.getppid()
|
||
for pid in output.splitlines():
|
||
pid = int(pid)
|
||
if pid in (current_pid, parent_pid):
|
||
print(f"Skip killing current process (pid={pid}) on port {port}")
|
||
continue
|
||
os.kill(pid, signal.SIGKILL)
|
||
print(f"Killed process on port {port}, pid={pid}")
|
||
except subprocess.CalledProcessError:
|
||
pass
|
||
|
||
|
||
def clean_ports():
|
||
"""
|
||
Kill all processes occupying the ports listed in PORTS_TO_CLEAN.
|
||
"""
|
||
for port in PORTS_TO_CLEAN:
|
||
kill_process_on_port(port)
|
||
time.sleep(2)
|
||
|
||
|
||
@pytest.fixture(scope="session", autouse=True)
|
||
def setup_and_run_server():
|
||
"""
|
||
Pytest fixture that runs once per test session:
|
||
- Cleans ports before tests
|
||
- Starts the API server as a subprocess
|
||
- Waits for server port to open (up to 30 seconds)
|
||
- Tears down server after all tests finish
|
||
"""
|
||
print("Pre-test port cleanup...")
|
||
clean_ports()
|
||
|
||
print("log dir clean ")
|
||
if os.path.exists("log") and os.path.isdir("log"):
|
||
shutil.rmtree("log")
|
||
|
||
base_path = os.getenv("MODEL_PATH")
|
||
if base_path:
|
||
model_path = os.path.join(base_path, "Qwen2-7B-Instruct")
|
||
else:
|
||
model_path = "./Qwen2-7B-Instruct"
|
||
|
||
log_path = "server.log"
|
||
cmd = [
|
||
sys.executable,
|
||
"-m",
|
||
"fastdeploy.entrypoints.openai.api_server",
|
||
"--model",
|
||
model_path,
|
||
"--port",
|
||
str(FD_API_PORT),
|
||
"--tensor-parallel-size",
|
||
"1",
|
||
"--engine-worker-queue-port",
|
||
str(FD_ENGINE_QUEUE_PORT),
|
||
"--metrics-port",
|
||
str(FD_METRICS_PORT),
|
||
"--cache-queue-port",
|
||
str(FD_CACHE_QUEUE_PORT),
|
||
"--max-model-len",
|
||
"32768",
|
||
"--max-num-seqs",
|
||
"128",
|
||
"--quantization",
|
||
"wint8",
|
||
]
|
||
|
||
# Start subprocess in new process group
|
||
with open(log_path, "w") as logfile:
|
||
process = subprocess.Popen(
|
||
cmd,
|
||
stdout=logfile,
|
||
stderr=subprocess.STDOUT,
|
||
start_new_session=True, # Enables killing full group via os.killpg
|
||
)
|
||
|
||
# Wait up to 300 seconds for API server to be ready
|
||
for _ in range(300):
|
||
if is_port_open("127.0.0.1", FD_API_PORT):
|
||
print(f"API server is up on port {FD_API_PORT}")
|
||
break
|
||
time.sleep(1)
|
||
else:
|
||
print("[TIMEOUT] API server failed to start in 5 minutes. Cleaning up...")
|
||
try:
|
||
os.killpg(process.pid, signal.SIGTERM)
|
||
except Exception as e:
|
||
print(f"Failed to kill process group: {e}")
|
||
raise RuntimeError(f"API server did not start on port {FD_API_PORT}")
|
||
|
||
yield # Run tests
|
||
|
||
print("\n===== Post-test server cleanup... =====")
|
||
try:
|
||
os.killpg(process.pid, signal.SIGTERM)
|
||
clean_ports()
|
||
print(f"API server (pid={process.pid}) terminated")
|
||
except Exception as e:
|
||
print(f"Failed to terminate API server: {e}")
|
||
|
||
|
||
@pytest.fixture(scope="session")
|
||
def api_url(request):
|
||
"""
|
||
Returns the API endpoint URL for chat completions.
|
||
"""
|
||
return f"http://0.0.0.0:{FD_API_PORT}/v1/chat/completions"
|
||
|
||
|
||
@pytest.fixture(scope="session")
|
||
def metrics_url(request):
|
||
"""
|
||
Returns the metrics endpoint URL.
|
||
"""
|
||
return f"http://0.0.0.0:{FD_METRICS_PORT}/metrics"
|
||
|
||
|
||
@pytest.fixture
|
||
def headers():
|
||
"""
|
||
Returns common HTTP request headers.
|
||
"""
|
||
return {"Content-Type": "application/json"}
|
||
|
||
|
||
@pytest.fixture
|
||
def consistent_payload():
|
||
"""
|
||
Returns a fixed payload for consistency testing,
|
||
including a fixed random seed and temperature.
|
||
"""
|
||
return {
|
||
"messages": [{"role": "user", "content": "用一句话介绍 PaddlePaddle"}],
|
||
"temperature": 0.9,
|
||
"top_p": 0, # fix top_p to reduce randomness
|
||
"seed": 13, # fixed random seed
|
||
}
|
||
|
||
|
||
# ==========================
|
||
# JSON Schema for validating chat API responses
|
||
# ==========================
|
||
chat_response_schema = {
|
||
"type": "object",
|
||
"properties": {
|
||
"id": {"type": "string"},
|
||
"object": {"type": "string"},
|
||
"created": {"type": "number"},
|
||
"model": {"type": "string"},
|
||
"choices": {
|
||
"type": "array",
|
||
"items": {
|
||
"type": "object",
|
||
"properties": {
|
||
"message": {
|
||
"type": "object",
|
||
"properties": {
|
||
"role": {"type": "string"},
|
||
"content": {"type": "string"},
|
||
},
|
||
"required": ["role", "content"],
|
||
},
|
||
"index": {"type": "number"},
|
||
"finish_reason": {"type": "string"},
|
||
},
|
||
"required": ["message", "index", "finish_reason"],
|
||
},
|
||
},
|
||
},
|
||
"required": ["id", "object", "created", "model", "choices"],
|
||
}
|
||
|
||
|
||
# ==========================
|
||
# Helper function to calculate difference rate between two texts
|
||
# ==========================
|
||
def calculate_diff_rate(text1, text2):
|
||
"""
|
||
Calculate the difference rate between two strings
|
||
based on the normalized Levenshtein edit distance.
|
||
Returns a float in [0,1], where 0 means identical.
|
||
"""
|
||
if text1 == text2:
|
||
return 0.0
|
||
|
||
len1, len2 = len(text1), len(text2)
|
||
dp = [[0] * (len2 + 1) for _ in range(len1 + 1)]
|
||
|
||
for i in range(len1 + 1):
|
||
for j in range(len2 + 1):
|
||
if i == 0 or j == 0:
|
||
dp[i][j] = i + j
|
||
elif text1[i - 1] == text2[j - 1]:
|
||
dp[i][j] = dp[i - 1][j - 1]
|
||
else:
|
||
dp[i][j] = 1 + min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1])
|
||
|
||
edit_distance = dp[len1][len2]
|
||
max_len = max(len1, len2)
|
||
return edit_distance / max_len if max_len > 0 else 0.0
|
||
|
||
|
||
# ==========================
|
||
# Valid prompt test cases for parameterized testing
|
||
# ==========================
|
||
valid_prompts = [
|
||
[{"role": "user", "content": "你好"}],
|
||
[{"role": "user", "content": "用一句话介绍 FastDeploy"}],
|
||
]
|
||
|
||
|
||
@pytest.mark.parametrize("messages", valid_prompts)
|
||
def test_valid_chat(messages, api_url, headers):
|
||
"""
|
||
Test valid chat requests.
|
||
"""
|
||
resp = requests.post(api_url, headers=headers, json={"messages": messages})
|
||
|
||
assert resp.status_code == 200
|
||
validate(instance=resp.json(), schema=chat_response_schema)
|
||
|
||
|
||
# ==========================
|
||
# Consistency test for repeated runs with fixed payload
|
||
# ==========================
|
||
def test_consistency_between_runs(api_url, headers, consistent_payload):
|
||
"""
|
||
Test that two runs with the same fixed input produce similar outputs.
|
||
"""
|
||
# First request
|
||
resp1 = requests.post(api_url, headers=headers, json=consistent_payload)
|
||
assert resp1.status_code == 200
|
||
result1 = resp1.json()
|
||
content1 = result1["choices"][0]["message"]["content"]
|
||
|
||
# Second request
|
||
resp2 = requests.post(api_url, headers=headers, json=consistent_payload)
|
||
assert resp2.status_code == 200
|
||
result2 = resp2.json()
|
||
content2 = result2["choices"][0]["message"]["content"]
|
||
|
||
# Calculate difference rate
|
||
diff_rate = calculate_diff_rate(content1, content2)
|
||
|
||
# Verify that the difference rate is below the threshold
|
||
assert diff_rate < 0.05, f"Output difference too large ({diff_rate:.4%})"
|
||
|
||
|
||
# ==========================
|
||
# Invalid prompt tests
|
||
# ==========================
|
||
|
||
invalid_prompts = [
|
||
[], # Empty array
|
||
[{}], # Empty object
|
||
[{"role": "user"}], # Missing content
|
||
[{"content": "hello"}], # Missing role
|
||
]
|
||
|
||
|
||
@pytest.mark.parametrize("messages", invalid_prompts)
|
||
def test_invalid_chat(messages, api_url, headers):
|
||
"""
|
||
Test invalid chat inputs
|
||
"""
|
||
resp = requests.post(api_url, headers=headers, json={"messages": messages})
|
||
assert resp.status_code >= 400, "Invalid request should return an error status code"
|
||
|
||
|
||
# ==========================
|
||
# Test for input exceeding context length
|
||
# ==========================
|
||
|
||
|
||
def test_exceed_context_length(api_url, headers):
|
||
"""
|
||
Test case for inputs that exceed the model's maximum context length.
|
||
"""
|
||
# Construct an overly long message
|
||
long_content = "你好," * 20000
|
||
|
||
messages = [{"role": "user", "content": long_content}]
|
||
|
||
resp = requests.post(api_url, headers=headers, json={"messages": messages})
|
||
|
||
# Check if the response indicates a token limit error or server error (500)
|
||
try:
|
||
response_json = resp.json()
|
||
except Exception:
|
||
response_json = {}
|
||
|
||
# Check status code and response content
|
||
assert (
|
||
resp.status_code != 200 or "token" in json.dumps(response_json).lower()
|
||
), f"Expected token limit error or similar, but got a normal response: {response_json}"
|
||
|
||
|
||
# ==========================
|
||
# Multi-turn Conversation Test
|
||
# ==========================
|
||
def test_multi_turn_conversation(api_url, headers):
|
||
"""
|
||
Test whether multi-turn conversation context is effective.
|
||
"""
|
||
messages = [
|
||
{"role": "user", "content": "你是谁?"},
|
||
{"role": "assistant", "content": "我是AI助手"},
|
||
{"role": "user", "content": "你能做什么?"},
|
||
]
|
||
resp = requests.post(api_url, headers=headers, json={"messages": messages})
|
||
assert resp.status_code == 200
|
||
validate(instance=resp.json(), schema=chat_response_schema)
|
||
|
||
|
||
# ==========================
|
||
# Concurrent Performance Test
|
||
# ==========================
|
||
def test_concurrent_perf(api_url, headers):
|
||
"""
|
||
Send concurrent requests to test stability and response time.
|
||
"""
|
||
prompts = [{"role": "user", "content": "Introduce FastDeploy."}]
|
||
|
||
def send_request():
|
||
"""
|
||
Send a single request
|
||
"""
|
||
resp = requests.post(api_url, headers=headers, json={"messages": prompts})
|
||
assert resp.status_code == 200
|
||
return resp.elapsed.total_seconds()
|
||
|
||
with concurrent.futures.ThreadPoolExecutor(max_workers=8) as executor:
|
||
futures = [executor.submit(send_request) for _ in range(8)]
|
||
durations = [f.result() for f in futures]
|
||
|
||
print("\nResponse time for each request:", durations)
|
||
|
||
|
||
# ==========================
|
||
# Metrics Endpoint Test
|
||
# ==========================
|
||
|
||
|
||
def test_metrics_endpoint(metrics_url):
|
||
"""
|
||
Test the metrics monitoring endpoint.
|
||
"""
|
||
resp = requests.get(metrics_url, timeout=5)
|
||
|
||
assert resp.status_code == 200, f"Unexpected status code: {resp.status_code}"
|
||
assert "text/plain" in resp.headers["Content-Type"], "Content-Type is not text/plain"
|
||
|
||
# Parse Prometheus metrics data
|
||
metrics_data = resp.text
|
||
lines = metrics_data.split("\n")
|
||
|
||
metric_lines = [line for line in lines if not line.startswith("#") and line.strip() != ""]
|
||
|
||
# 断言 具体值
|
||
num_requests_running_found = False
|
||
num_requests_waiting_found = False
|
||
time_to_first_token_seconds_sum_found = False
|
||
time_per_output_token_seconds_sum_found = False
|
||
e2e_request_latency_seconds_sum_found = False
|
||
request_inference_time_seconds_sum_found = False
|
||
request_queue_time_seconds_sum_found = False
|
||
request_prefill_time_seconds_sum_found = False
|
||
request_decode_time_seconds_sum_found = False
|
||
prompt_tokens_total_found = False
|
||
generation_tokens_total_found = False
|
||
request_prompt_tokens_sum_found = False
|
||
request_generation_tokens_sum_found = False
|
||
gpu_cache_usage_perc_found = False
|
||
request_params_max_tokens_sum_found = False
|
||
request_success_total_found = False
|
||
cache_config_info_found = False
|
||
available_batch_size_found = False
|
||
hit_req_rate_found = False
|
||
hit_token_rate_found = False
|
||
cpu_hit_token_rate_found = False
|
||
gpu_hit_token_rate_found = False
|
||
|
||
for line in metric_lines:
|
||
if line.startswith("fastdeploy:num_requests_running"):
|
||
_, value = line.rsplit(" ", 1)
|
||
assert float(value) >= 0, "num_requests_running 值错误"
|
||
num_requests_running_found = True
|
||
elif line.startswith("fastdeploy:num_requests_waiting"):
|
||
_, value = line.rsplit(" ", 1)
|
||
num_requests_waiting_found = True
|
||
assert float(value) >= 0, "num_requests_waiting 值错误"
|
||
elif line.startswith("fastdeploy:time_to_first_token_seconds_sum"):
|
||
_, value = line.rsplit(" ", 1)
|
||
assert float(value) >= 0, "time_to_first_token_seconds_sum 值错误"
|
||
time_to_first_token_seconds_sum_found = True
|
||
elif line.startswith("fastdeploy:time_per_output_token_seconds_sum"):
|
||
_, value = line.rsplit(" ", 1)
|
||
assert float(value) >= 0, "time_per_output_token_seconds_sum 值错误"
|
||
time_per_output_token_seconds_sum_found = True
|
||
elif line.startswith("fastdeploy:e2e_request_latency_seconds_sum"):
|
||
_, value = line.rsplit(" ", 1)
|
||
assert float(value) >= 0, "e2e_request_latency_seconds_sum_found 值错误"
|
||
e2e_request_latency_seconds_sum_found = True
|
||
elif line.startswith("fastdeploy:request_inference_time_seconds_sum"):
|
||
_, value = line.rsplit(" ", 1)
|
||
assert float(value) >= 0, "request_inference_time_seconds_sum 值错误"
|
||
request_inference_time_seconds_sum_found = True
|
||
elif line.startswith("fastdeploy:request_queue_time_seconds_sum"):
|
||
_, value = line.rsplit(" ", 1)
|
||
assert float(value) >= 0, "request_queue_time_seconds_sum 值错误"
|
||
request_queue_time_seconds_sum_found = True
|
||
elif line.startswith("fastdeploy:request_prefill_time_seconds_sum"):
|
||
_, value = line.rsplit(" ", 1)
|
||
assert float(value) >= 0, "request_prefill_time_seconds_sum 值错误"
|
||
request_prefill_time_seconds_sum_found = True
|
||
elif line.startswith("fastdeploy:request_decode_time_seconds_sum"):
|
||
_, value = line.rsplit(" ", 1)
|
||
assert float(value) >= 0, "request_decode_time_seconds_sum 值错误"
|
||
request_decode_time_seconds_sum_found = True
|
||
elif line.startswith("fastdeploy:prompt_tokens_total"):
|
||
_, value = line.rsplit(" ", 1)
|
||
assert float(value) >= 0, "prompt_tokens_total 值错误"
|
||
prompt_tokens_total_found = True
|
||
elif line.startswith("fastdeploy:generation_tokens_total"):
|
||
_, value = line.rsplit(" ", 1)
|
||
assert float(value) >= 0, "generation_tokens_total 值错误"
|
||
generation_tokens_total_found = True
|
||
elif line.startswith("fastdeploy:request_prompt_tokens_sum"):
|
||
_, value = line.rsplit(" ", 1)
|
||
assert float(value) >= 0, "request_prompt_tokens_sum 值错误"
|
||
request_prompt_tokens_sum_found = True
|
||
elif line.startswith("fastdeploy:request_generation_tokens_sum"):
|
||
_, value = line.rsplit(" ", 1)
|
||
assert float(value) >= 0, "request_generation_tokens_sum 值错误"
|
||
request_generation_tokens_sum_found = True
|
||
elif line.startswith("fastdeploy:gpu_cache_usage_perc"):
|
||
_, value = line.rsplit(" ", 1)
|
||
assert float(value) >= 0, "gpu_cache_usage_perc 值错误"
|
||
gpu_cache_usage_perc_found = True
|
||
elif line.startswith("fastdeploy:request_params_max_tokens_sum"):
|
||
_, value = line.rsplit(" ", 1)
|
||
assert float(value) >= 0, "request_params_max_tokens_sum 值错误"
|
||
request_params_max_tokens_sum_found = True
|
||
elif line.startswith("fastdeploy:request_success_total"):
|
||
_, value = line.rsplit(" ", 1)
|
||
assert float(value) >= 0, "request_success_total 值错误"
|
||
request_success_total_found = True
|
||
elif line.startswith("fastdeploy:cache_config_info"):
|
||
_, value = line.rsplit(" ", 1)
|
||
assert float(value) >= 0, "cache_config_info 值错误"
|
||
cache_config_info_found = True
|
||
elif line.startswith("fastdeploy:available_batch_size"):
|
||
_, value = line.rsplit(" ", 1)
|
||
assert float(value) >= 0, "available_batch_size 值错误"
|
||
available_batch_size_found = True
|
||
elif line.startswith("fastdeploy:hit_req_rate"):
|
||
_, value = line.rsplit(" ", 1)
|
||
assert float(value) >= 0, "hit_req_rate 值错误"
|
||
hit_req_rate_found = True
|
||
elif line.startswith("fastdeploy:hit_token_rate"):
|
||
_, value = line.rsplit(" ", 1)
|
||
assert float(value) >= 0, "hit_token_rate 值错误"
|
||
hit_token_rate_found = True
|
||
elif line.startswith("fastdeploy:cpu_hit_token_rate"):
|
||
_, value = line.rsplit(" ", 1)
|
||
assert float(value) >= 0, "cpu_hit_token_rate 值错误"
|
||
cpu_hit_token_rate_found = True
|
||
elif line.startswith("fastdeploy:gpu_hit_token_rate"):
|
||
_, value = line.rsplit(" ", 1)
|
||
assert float(value) >= 0, "gpu_hit_token_rate 值错误"
|
||
gpu_hit_token_rate_found = True
|
||
assert num_requests_running_found, "缺少 fastdeploy:num_requests_running 指标"
|
||
assert num_requests_waiting_found, "缺少 fastdeploy:num_requests_waiting 指标"
|
||
assert time_to_first_token_seconds_sum_found, "缺少 fastdeploy:time_to_first_token_seconds_sum 指标"
|
||
assert time_per_output_token_seconds_sum_found, "缺少 fastdeploy:time_per_output_token_seconds_sum 指标"
|
||
assert e2e_request_latency_seconds_sum_found, "缺少 fastdeploy:e2e_request_latency_seconds_sum_found 指标"
|
||
assert request_inference_time_seconds_sum_found, "缺少 fastdeploy:request_inference_time_seconds_sum 指标"
|
||
assert request_queue_time_seconds_sum_found, "缺少 fastdeploy:request_queue_time_seconds_sum 指标"
|
||
assert request_prefill_time_seconds_sum_found, "缺少 fastdeploy:request_prefill_time_seconds_sum 指标"
|
||
assert request_decode_time_seconds_sum_found, "缺少 fastdeploy:request_decode_time_seconds_sum 指标"
|
||
assert prompt_tokens_total_found, "缺少 fastdeploy:prompt_tokens_total 指标"
|
||
assert generation_tokens_total_found, "缺少 fastdeploy:generation_tokens_total 指标"
|
||
assert request_prompt_tokens_sum_found, "缺少 fastdeploy:request_prompt_tokens_sum 指标"
|
||
assert request_generation_tokens_sum_found, "缺少 fastdeploy:request_generation_tokens_sum 指标"
|
||
assert gpu_cache_usage_perc_found, "缺少 fastdeploy:gpu_cache_usage_perc 指标"
|
||
assert request_params_max_tokens_sum_found, "缺少 fastdeploy:request_params_max_tokens_sum 指标"
|
||
assert request_success_total_found, "缺少 fastdeploy:request_success_total 指标"
|
||
assert cache_config_info_found, "缺少 fastdeploy:cache_config_info 指标"
|
||
assert available_batch_size_found, "缺少 fastdeploy:available_batch_size 指标"
|
||
assert hit_req_rate_found, "缺少 fastdeploy:hit_req_rate 指标"
|
||
assert hit_token_rate_found, "缺少 fastdeploy:hit_token_rate 指标"
|
||
assert cpu_hit_token_rate_found, "缺少 fastdeploy:hit_token_rate 指标"
|
||
assert gpu_hit_token_rate_found, "缺少 fastdeploy:gpu_hit_token_rate 指标"
|
||
|
||
|
||
# ==========================
|
||
# OpenAI Client chat.completions Test
|
||
# ==========================
|
||
|
||
|
||
@pytest.fixture
|
||
def openai_client():
|
||
ip = "0.0.0.0"
|
||
service_http_port = str(FD_API_PORT)
|
||
client = openai.Client(
|
||
base_url=f"http://{ip}:{service_http_port}/v1",
|
||
api_key="EMPTY_API_KEY",
|
||
)
|
||
return client
|
||
|
||
|
||
# Non-streaming test
|
||
def test_non_streaming_chat(openai_client):
|
||
"""Test non-streaming chat functionality with the local service"""
|
||
response = openai_client.chat.completions.create(
|
||
model="default",
|
||
messages=[
|
||
{"role": "system", "content": "You are a helpful AI assistant."},
|
||
{"role": "user", "content": "List 3 countries and their capitals."},
|
||
],
|
||
temperature=1,
|
||
max_tokens=1024,
|
||
stream=False,
|
||
)
|
||
|
||
assert hasattr(response, "choices")
|
||
assert len(response.choices) > 0
|
||
assert hasattr(response.choices[0], "message")
|
||
assert hasattr(response.choices[0].message, "content")
|
||
|
||
|
||
# Streaming test
|
||
def test_streaming_chat(openai_client, capsys):
|
||
"""Test streaming chat functionality with the local service"""
|
||
response = openai_client.chat.completions.create(
|
||
model="default",
|
||
messages=[
|
||
{"role": "system", "content": "You are a helpful AI assistant."},
|
||
{"role": "user", "content": "List 3 countries and their capitals."},
|
||
{
|
||
"role": "assistant",
|
||
"content": "China(Beijing), France(Paris), Australia(Canberra).",
|
||
},
|
||
{"role": "user", "content": "OK, tell more."},
|
||
],
|
||
temperature=1,
|
||
max_tokens=1024,
|
||
stream=True,
|
||
)
|
||
|
||
output = []
|
||
for chunk in response:
|
||
if hasattr(chunk.choices[0], "delta") and hasattr(chunk.choices[0].delta, "content"):
|
||
output.append(chunk.choices[0].delta.content)
|
||
assert len(output) > 2
|
||
|
||
|
||
# ==========================
|
||
# OpenAI Client completions Test
|
||
# ==========================
|
||
|
||
|
||
def test_non_streaming(openai_client):
|
||
"""Test non-streaming chat functionality with the local service"""
|
||
response = openai_client.completions.create(
|
||
model="default",
|
||
prompt="Hello, how are you?",
|
||
temperature=1,
|
||
max_tokens=1024,
|
||
stream=False,
|
||
)
|
||
|
||
# Assertions to check the response structure
|
||
assert hasattr(response, "choices")
|
||
assert len(response.choices) > 0
|
||
|
||
|
||
def test_streaming(openai_client, capsys):
|
||
"""Test streaming functionality with the local service"""
|
||
response = openai_client.completions.create(
|
||
model="default",
|
||
prompt="Hello, how are you?",
|
||
temperature=1,
|
||
max_tokens=1024,
|
||
stream=True,
|
||
)
|
||
|
||
# Collect streaming output
|
||
output = []
|
||
for chunk in response:
|
||
output.append(chunk.choices[0].text)
|
||
assert len(output) > 0
|
||
|
||
|
||
def test_profile_reset_block_num():
|
||
"""测试profile reset_block_num功能,与baseline diff不能超过5%"""
|
||
log_file = "./log/config.log"
|
||
baseline = 32562
|
||
|
||
if not os.path.exists(log_file):
|
||
pytest.fail(f"Log file not found: {log_file}")
|
||
|
||
with open(log_file, "r") as f:
|
||
log_lines = f.readlines()
|
||
|
||
target_line = None
|
||
for line in log_lines:
|
||
if "Reset block num" in line:
|
||
target_line = line.strip()
|
||
break
|
||
|
||
if target_line is None:
|
||
pytest.fail("日志中没有Reset block num信息")
|
||
|
||
match = re.search(r"total_block_num:(\d+)", target_line)
|
||
if not match:
|
||
pytest.fail(f"Failed to extract total_block_num from line: {target_line}")
|
||
|
||
try:
|
||
actual_value = int(match.group(1))
|
||
except ValueError:
|
||
pytest.fail(f"Invalid number format: {match.group(1)}")
|
||
|
||
lower_bound = baseline * (1 - 0.05)
|
||
upper_bound = baseline * (1 + 0.05)
|
||
print(f"Reset total_block_num: {actual_value}. baseline: {baseline}")
|
||
|
||
assert lower_bound <= actual_value <= upper_bound, (
|
||
f"Reset total_block_num {actual_value} 与 baseline {baseline} diff需要在5%以内"
|
||
f"Allowed range: [{lower_bound:.1f}, {upper_bound:.1f}]"
|
||
)
|
||
|
||
|
||
def test_prompt_token_ids_in_non_streaming_completion(openai_client):
|
||
"""
|
||
Test cases for passing token ids through `prompt`/`prompt_token_ids` in non-streaming completion api
|
||
"""
|
||
# Test case for passing a token id list in `prompt_token_ids`
|
||
response = openai_client.completions.create(
|
||
model="default",
|
||
prompt="",
|
||
temperature=1,
|
||
max_tokens=5,
|
||
extra_body={"prompt_token_ids": [5209, 626, 274, 45954, 1071, 3265, 3934, 1869, 93937]},
|
||
stream=False,
|
||
)
|
||
assert len(response.choices) == 1
|
||
assert response.usage.prompt_tokens == 9
|
||
|
||
# Test case for passing a batch of token id lists in `prompt_token_ids`
|
||
response = openai_client.completions.create(
|
||
model="default",
|
||
prompt="",
|
||
temperature=1,
|
||
max_tokens=5,
|
||
extra_body={"prompt_token_ids": [[5209, 626, 274, 45954, 1071, 3265, 3934, 1869, 93937], [1, 2, 3]]},
|
||
stream=False,
|
||
)
|
||
assert len(response.choices) == 2
|
||
assert response.usage.prompt_tokens == 9 + 3
|
||
|
||
# Test case for passing a token id list in `prompt`
|
||
response = openai_client.completions.create(
|
||
model="default",
|
||
prompt=[5209, 626, 274, 45954, 1071, 3265, 3934, 1869, 93937],
|
||
temperature=1,
|
||
max_tokens=5,
|
||
stream=False,
|
||
)
|
||
assert len(response.choices) == 1
|
||
assert response.usage.prompt_tokens == 9
|
||
|
||
# Test case for passing a batch of token id lists in `prompt`
|
||
response = openai_client.completions.create(
|
||
model="default",
|
||
prompt=[[5209, 626, 274, 45954, 1071, 3265, 3934, 1869, 93937], [1, 2, 3]],
|
||
temperature=1,
|
||
max_tokens=5,
|
||
stream=False,
|
||
)
|
||
assert len(response.choices) == 2
|
||
assert response.usage.prompt_tokens == 9 + 3
|
||
|
||
|
||
def test_prompt_token_ids_in_streaming_completion(openai_client):
|
||
"""
|
||
Test cases for passing token ids through `prompt`/`prompt_token_ids` in streaming completion api
|
||
"""
|
||
# Test case for passing a token id list in `prompt_token_ids`
|
||
response = openai_client.completions.create(
|
||
model="default",
|
||
prompt="",
|
||
temperature=1,
|
||
max_tokens=5,
|
||
extra_body={"prompt_token_ids": [5209, 626, 274, 45954, 1071, 3265, 3934, 1869, 93937]},
|
||
stream=True,
|
||
stream_options={"include_usage": True},
|
||
)
|
||
sum_prompt_tokens = 0
|
||
for chunk in response:
|
||
if len(chunk.choices) > 0:
|
||
assert chunk.usage is None
|
||
else:
|
||
sum_prompt_tokens += chunk.usage.prompt_tokens
|
||
assert sum_prompt_tokens == 9
|
||
|
||
# Test case for passing a batch of token id lists in `prompt_token_ids`
|
||
response = openai_client.completions.create(
|
||
model="default",
|
||
prompt="",
|
||
temperature=1,
|
||
max_tokens=5,
|
||
extra_body={"prompt_token_ids": [[5209, 626, 274, 45954, 1071, 3265, 3934, 1869, 93937], [1, 2, 3]]},
|
||
stream=True,
|
||
stream_options={"include_usage": True},
|
||
)
|
||
sum_prompt_tokens = 0
|
||
for chunk in response:
|
||
if len(chunk.choices) > 0:
|
||
assert chunk.usage is None
|
||
else:
|
||
sum_prompt_tokens += chunk.usage.prompt_tokens
|
||
assert sum_prompt_tokens == 9 + 3
|
||
|
||
# Test case for passing a token id list in `prompt`
|
||
response = openai_client.completions.create(
|
||
model="default",
|
||
prompt=[5209, 626, 274, 45954, 1071, 3265, 3934, 1869, 93937],
|
||
temperature=1,
|
||
max_tokens=5,
|
||
stream=True,
|
||
stream_options={"include_usage": True},
|
||
)
|
||
sum_prompt_tokens = 0
|
||
for chunk in response:
|
||
if len(chunk.choices) > 0:
|
||
assert chunk.usage is None
|
||
else:
|
||
sum_prompt_tokens += chunk.usage.prompt_tokens
|
||
assert sum_prompt_tokens == 9
|
||
|
||
# Test case for passing a batch of token id lists in `prompt`
|
||
response = openai_client.completions.create(
|
||
model="default",
|
||
prompt=[[5209, 626, 274, 45954, 1071, 3265, 3934, 1869, 93937], [1, 2, 3]],
|
||
temperature=1,
|
||
max_tokens=5,
|
||
stream=True,
|
||
stream_options={"include_usage": True},
|
||
)
|
||
sum_prompt_tokens = 0
|
||
for chunk in response:
|
||
if len(chunk.choices) > 0:
|
||
assert chunk.usage is None
|
||
else:
|
||
sum_prompt_tokens += chunk.usage.prompt_tokens
|
||
assert sum_prompt_tokens == 9 + 3
|