Files
FastDeploy/test/ci_use/Qwen2-7B-Instruct_serving/test_Qwen2-7B-Instruct_serving.py
qwes5s5 2ee91d7a96 [metrics] Add serveral observability metrics (#3868) (#4011)
* [metrics] Add serveral observability metrics (#3868)

* Add several observability metrics

* [wenxin-tools-584] 【可观测性】支持查看本节点的并发数、剩余block_size、排队请求数等信息

* adjust some metrics and md files

* trigger ci

* adjust ci file

* trigger ci

* trigger ci

---------

Co-authored-by: K11OntheBoat <your_email@example.com>
Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>

* version adjust

---------

Co-authored-by: K11OntheBoat <your_email@example.com>
Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
2025-09-10 10:59:57 +08:00

637 lines
23 KiB
Python

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import concurrent.futures
import json
import os
import signal
import socket
import subprocess
import sys
import time
import openai
import pytest
import requests
from jsonschema import validate
# Read ports from environment variables; use default values if not set
FD_API_PORT = int(os.getenv("FD_API_PORT", 8188))
FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8133))
FD_METRICS_PORT = int(os.getenv("FD_METRICS_PORT", 8233))
# List of ports to clean before and after tests
PORTS_TO_CLEAN = [FD_API_PORT, FD_ENGINE_QUEUE_PORT, FD_METRICS_PORT]
def is_port_open(host: str, port: int, timeout=1.0):
"""
Check if a TCP port is open on the given host.
Returns True if connection succeeds, False otherwise.
"""
try:
with socket.create_connection((host, port), timeout):
return True
except Exception:
return False
def kill_process_on_port(port: int):
"""
Kill processes that are listening on the given port.
Uses `lsof` to find process ids and sends SIGKILL.
"""
try:
output = subprocess.check_output(f"lsof -i:{port} -t", shell=True).decode().strip()
for pid in output.splitlines():
os.kill(int(pid), signal.SIGKILL)
print(f"Killed process on port {port}, pid={pid}")
except subprocess.CalledProcessError:
pass
def clean_ports():
"""
Kill all processes occupying the ports listed in PORTS_TO_CLEAN.
"""
for port in PORTS_TO_CLEAN:
kill_process_on_port(port)
@pytest.fixture(scope="session", autouse=True)
def setup_and_run_server():
"""
Pytest fixture that runs once per test session:
- Cleans ports before tests
- Starts the API server as a subprocess
- Waits for server port to open (up to 30 seconds)
- Tears down server after all tests finish
"""
print("Pre-test port cleanup...")
clean_ports()
base_path = os.getenv("MODEL_PATH")
if base_path:
model_path = os.path.join(base_path, "Qwen2-7B-Instruct")
else:
model_path = "./Qwen2-7B-Instruct"
log_path = "server.log"
cmd = [
sys.executable,
"-m",
"fastdeploy.entrypoints.openai.api_server",
"--model",
model_path,
"--port",
str(FD_API_PORT),
"--tensor-parallel-size",
"1",
"--engine-worker-queue-port",
str(FD_ENGINE_QUEUE_PORT),
"--metrics-port",
str(FD_METRICS_PORT),
"--max-model-len",
"32768",
"--max-num-seqs",
"128",
"--quantization",
"wint8",
]
# Start subprocess in new process group
with open(log_path, "w") as logfile:
process = subprocess.Popen(
cmd,
stdout=logfile,
stderr=subprocess.STDOUT,
start_new_session=True, # Enables killing full group via os.killpg
)
# Wait up to 300 seconds for API server to be ready
for _ in range(300):
if is_port_open("127.0.0.1", FD_API_PORT):
print(f"API server is up on port {FD_API_PORT}")
break
time.sleep(1)
else:
print("[TIMEOUT] API server failed to start in 5 minutes. Cleaning up...")
try:
os.killpg(process.pid, signal.SIGTERM)
except Exception as e:
print(f"Failed to kill process group: {e}")
raise RuntimeError(f"API server did not start on port {FD_API_PORT}")
yield # Run tests
print("\n===== Post-test server cleanup... =====")
try:
os.killpg(process.pid, signal.SIGTERM)
print(f"API server (pid={process.pid}) terminated")
except Exception as e:
print(f"Failed to terminate API server: {e}")
@pytest.fixture(scope="session")
def api_url(request):
"""
Returns the API endpoint URL for chat completions.
"""
return f"http://0.0.0.0:{FD_API_PORT}/v1/chat/completions"
@pytest.fixture(scope="session")
def metrics_url(request):
"""
Returns the metrics endpoint URL.
"""
return f"http://0.0.0.0:{FD_METRICS_PORT}/metrics"
@pytest.fixture
def headers():
"""
Returns common HTTP request headers.
"""
return {"Content-Type": "application/json"}
@pytest.fixture
def consistent_payload():
"""
Returns a fixed payload for consistency testing,
including a fixed random seed and temperature.
"""
return {
"messages": [{"role": "user", "content": "用一句话介绍 PaddlePaddle"}],
"temperature": 0.9,
"top_p": 0, # fix top_p to reduce randomness
"seed": 13, # fixed random seed
}
# ==========================
# JSON Schema for validating chat API responses
# ==========================
chat_response_schema = {
"type": "object",
"properties": {
"id": {"type": "string"},
"object": {"type": "string"},
"created": {"type": "number"},
"model": {"type": "string"},
"choices": {
"type": "array",
"items": {
"type": "object",
"properties": {
"message": {
"type": "object",
"properties": {
"role": {"type": "string"},
"content": {"type": "string"},
},
"required": ["role", "content"],
},
"index": {"type": "number"},
"finish_reason": {"type": "string"},
},
"required": ["message", "index", "finish_reason"],
},
},
},
"required": ["id", "object", "created", "model", "choices"],
}
# ==========================
# Helper function to calculate difference rate between two texts
# ==========================
def calculate_diff_rate(text1, text2):
"""
Calculate the difference rate between two strings
based on the normalized Levenshtein edit distance.
Returns a float in [0,1], where 0 means identical.
"""
if text1 == text2:
return 0.0
len1, len2 = len(text1), len(text2)
dp = [[0] * (len2 + 1) for _ in range(len1 + 1)]
for i in range(len1 + 1):
for j in range(len2 + 1):
if i == 0 or j == 0:
dp[i][j] = i + j
elif text1[i - 1] == text2[j - 1]:
dp[i][j] = dp[i - 1][j - 1]
else:
dp[i][j] = 1 + min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1])
edit_distance = dp[len1][len2]
max_len = max(len1, len2)
return edit_distance / max_len if max_len > 0 else 0.0
# ==========================
# Valid prompt test cases for parameterized testing
# ==========================
valid_prompts = [
[{"role": "user", "content": "你好"}],
[{"role": "user", "content": "用一句话介绍 FastDeploy"}],
]
@pytest.mark.parametrize("messages", valid_prompts)
def test_valid_chat(messages, api_url, headers):
"""
Test valid chat requests.
"""
resp = requests.post(api_url, headers=headers, json={"messages": messages})
assert resp.status_code == 200
validate(instance=resp.json(), schema=chat_response_schema)
# ==========================
# Consistency test for repeated runs with fixed payload
# ==========================
def test_consistency_between_runs(api_url, headers, consistent_payload):
"""
Test that two runs with the same fixed input produce similar outputs.
"""
# First request
resp1 = requests.post(api_url, headers=headers, json=consistent_payload)
assert resp1.status_code == 200
result1 = resp1.json()
content1 = result1["choices"][0]["message"]["content"]
# Second request
resp2 = requests.post(api_url, headers=headers, json=consistent_payload)
assert resp2.status_code == 200
result2 = resp2.json()
content2 = result2["choices"][0]["message"]["content"]
# Calculate difference rate
diff_rate = calculate_diff_rate(content1, content2)
# Verify that the difference rate is below the threshold
assert diff_rate < 0.05, f"Output difference too large ({diff_rate:.4%})"
# ==========================
# Invalid prompt tests
# ==========================
invalid_prompts = [
[], # Empty array
[{}], # Empty object
[{"role": "user"}], # Missing content
[{"content": "hello"}], # Missing role
]
@pytest.mark.parametrize("messages", invalid_prompts)
def test_invalid_chat(messages, api_url, headers):
"""
Test invalid chat inputs
"""
resp = requests.post(api_url, headers=headers, json={"messages": messages})
assert resp.status_code >= 400, "Invalid request should return an error status code"
# ==========================
# Test for input exceeding context length
# ==========================
def test_exceed_context_length(api_url, headers):
"""
Test case for inputs that exceed the model's maximum context length.
"""
# Construct an overly long message
long_content = "你好," * 20000
messages = [{"role": "user", "content": long_content}]
resp = requests.post(api_url, headers=headers, json={"messages": messages})
# Check if the response indicates a token limit error or server error (500)
try:
response_json = resp.json()
except Exception:
response_json = {}
# Check status code and response content
assert (
resp.status_code != 200 or "token" in json.dumps(response_json).lower()
), f"Expected token limit error or similar, but got a normal response: {response_json}"
# ==========================
# Multi-turn Conversation Test
# ==========================
def test_multi_turn_conversation(api_url, headers):
"""
Test whether multi-turn conversation context is effective.
"""
messages = [
{"role": "user", "content": "你是谁?"},
{"role": "assistant", "content": "我是AI助手"},
{"role": "user", "content": "你能做什么?"},
]
resp = requests.post(api_url, headers=headers, json={"messages": messages})
assert resp.status_code == 200
validate(instance=resp.json(), schema=chat_response_schema)
# ==========================
# Concurrent Performance Test
# ==========================
def test_concurrent_perf(api_url, headers):
"""
Send concurrent requests to test stability and response time.
"""
prompts = [{"role": "user", "content": "Introduce FastDeploy."}]
def send_request():
"""
Send a single request
"""
resp = requests.post(api_url, headers=headers, json={"messages": prompts})
assert resp.status_code == 200
return resp.elapsed.total_seconds()
with concurrent.futures.ThreadPoolExecutor(max_workers=8) as executor:
futures = [executor.submit(send_request) for _ in range(8)]
durations = [f.result() for f in futures]
print("\nResponse time for each request:", durations)
# ==========================
# Metrics Endpoint Test
# ==========================
def test_metrics_endpoint(metrics_url):
"""
Test the metrics monitoring endpoint.
"""
resp = requests.get(metrics_url, timeout=5)
assert resp.status_code == 200, f"Unexpected status code: {resp.status_code}"
assert "text/plain" in resp.headers["Content-Type"], "Content-Type is not text/plain"
# Parse Prometheus metrics data
metrics_data = resp.text
lines = metrics_data.split("\n")
metric_lines = [line for line in lines if not line.startswith("#") and line.strip() != ""]
# 断言 具体值
num_requests_running_found = False
num_requests_waiting_found = False
time_to_first_token_seconds_sum_found = False
time_per_output_token_seconds_sum_found = False
e2e_request_latency_seconds_sum_found = False
request_inference_time_seconds_sum_found = False
request_queue_time_seconds_sum_found = False
request_prefill_time_seconds_sum_found = False
request_decode_time_seconds_sum_found = False
prompt_tokens_total_found = False
generation_tokens_total_found = False
request_prompt_tokens_sum_found = False
request_generation_tokens_sum_found = False
gpu_cache_usage_perc_found = False
request_params_max_tokens_sum_found = False
request_success_total_found = False
cache_config_info_found = False
available_batch_size_found = False
hit_req_rate_found = False
hit_token_rate_found = False
cpu_hit_token_rate_found = False
gpu_hit_token_rate_found = False
for line in metric_lines:
if line.startswith("fastdeploy:num_requests_running"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "num_requests_running 值错误"
num_requests_running_found = True
elif line.startswith("fastdeploy:num_requests_waiting"):
_, value = line.rsplit(" ", 1)
num_requests_waiting_found = True
assert float(value) >= 0, "num_requests_waiting 值错误"
elif line.startswith("fastdeploy:time_to_first_token_seconds_sum"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "time_to_first_token_seconds_sum 值错误"
time_to_first_token_seconds_sum_found = True
elif line.startswith("fastdeploy:time_per_output_token_seconds_sum"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "time_per_output_token_seconds_sum 值错误"
time_per_output_token_seconds_sum_found = True
elif line.startswith("fastdeploy:e2e_request_latency_seconds_sum"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "e2e_request_latency_seconds_sum_found 值错误"
e2e_request_latency_seconds_sum_found = True
elif line.startswith("fastdeploy:request_inference_time_seconds_sum"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "request_inference_time_seconds_sum 值错误"
request_inference_time_seconds_sum_found = True
elif line.startswith("fastdeploy:request_queue_time_seconds_sum"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "request_queue_time_seconds_sum 值错误"
request_queue_time_seconds_sum_found = True
elif line.startswith("fastdeploy:request_prefill_time_seconds_sum"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "request_prefill_time_seconds_sum 值错误"
request_prefill_time_seconds_sum_found = True
elif line.startswith("fastdeploy:request_decode_time_seconds_sum"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "request_decode_time_seconds_sum 值错误"
request_decode_time_seconds_sum_found = True
elif line.startswith("fastdeploy:prompt_tokens_total"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "prompt_tokens_total 值错误"
prompt_tokens_total_found = True
elif line.startswith("fastdeploy:generation_tokens_total"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "generation_tokens_total 值错误"
generation_tokens_total_found = True
elif line.startswith("fastdeploy:request_prompt_tokens_sum"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "request_prompt_tokens_sum 值错误"
request_prompt_tokens_sum_found = True
elif line.startswith("fastdeploy:request_generation_tokens_sum"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "request_generation_tokens_sum 值错误"
request_generation_tokens_sum_found = True
elif line.startswith("fastdeploy:gpu_cache_usage_perc"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "gpu_cache_usage_perc 值错误"
gpu_cache_usage_perc_found = True
elif line.startswith("fastdeploy:request_params_max_tokens_sum"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "request_params_max_tokens_sum 值错误"
request_params_max_tokens_sum_found = True
elif line.startswith("fastdeploy:request_success_total"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "request_success_total 值错误"
request_success_total_found = True
elif line.startswith("fastdeploy:cache_config_info"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "cache_config_info 值错误"
cache_config_info_found = True
elif line.startswith("fastdeploy:available_batch_size"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "available_batch_size 值错误"
available_batch_size_found = True
elif line.startswith("fastdeploy:hit_req_rate"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "hit_req_rate 值错误"
hit_req_rate_found = True
elif line.startswith("fastdeploy:hit_token_rate"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "hit_token_rate 值错误"
hit_token_rate_found = True
elif line.startswith("fastdeploy:cpu_hit_token_rate"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "cpu_hit_token_rate 值错误"
cpu_hit_token_rate_found = True
elif line.startswith("fastdeploy:gpu_hit_token_rate"):
_, value = line.rsplit(" ", 1)
assert float(value) >= 0, "gpu_hit_token_rate 值错误"
gpu_hit_token_rate_found = True
assert num_requests_running_found, "缺少 fastdeploy:num_requests_running 指标"
assert num_requests_waiting_found, "缺少 fastdeploy:num_requests_waiting 指标"
assert time_to_first_token_seconds_sum_found, "缺少 fastdeploy:time_to_first_token_seconds_sum 指标"
assert time_per_output_token_seconds_sum_found, "缺少 fastdeploy:time_per_output_token_seconds_sum 指标"
assert e2e_request_latency_seconds_sum_found, "缺少 fastdeploy:e2e_request_latency_seconds_sum_found 指标"
assert request_inference_time_seconds_sum_found, "缺少 fastdeploy:request_inference_time_seconds_sum 指标"
assert request_queue_time_seconds_sum_found, "缺少 fastdeploy:request_queue_time_seconds_sum 指标"
assert request_prefill_time_seconds_sum_found, "缺少 fastdeploy:request_prefill_time_seconds_sum 指标"
assert request_decode_time_seconds_sum_found, "缺少 fastdeploy:request_decode_time_seconds_sum 指标"
assert prompt_tokens_total_found, "缺少 fastdeploy:prompt_tokens_total 指标"
assert generation_tokens_total_found, "缺少 fastdeploy:generation_tokens_total 指标"
assert request_prompt_tokens_sum_found, "缺少 fastdeploy:request_prompt_tokens_sum 指标"
assert request_generation_tokens_sum_found, "缺少 fastdeploy:request_generation_tokens_sum 指标"
assert gpu_cache_usage_perc_found, "缺少 fastdeploy:gpu_cache_usage_perc 指标"
assert request_params_max_tokens_sum_found, "缺少 fastdeploy:request_params_max_tokens_sum 指标"
assert request_success_total_found, "缺少 fastdeploy:request_success_total 指标"
assert cache_config_info_found, "缺少 fastdeploy:cache_config_info 指标"
assert available_batch_size_found, "缺少 fastdeploy:available_batch_size 指标"
assert hit_req_rate_found, "缺少 fastdeploy:hit_req_rate 指标"
assert hit_token_rate_found, "缺少 fastdeploy:hit_token_rate 指标"
assert cpu_hit_token_rate_found, "缺少 fastdeploy:hit_token_rate 指标"
assert gpu_hit_token_rate_found, "缺少 fastdeploy:gpu_hit_token_rate 指标"
# ==========================
# OpenAI Client chat.completions Test
# ==========================
@pytest.fixture
def openai_client():
ip = "0.0.0.0"
service_http_port = str(FD_API_PORT)
client = openai.Client(
base_url=f"http://{ip}:{service_http_port}/v1",
api_key="EMPTY_API_KEY",
)
return client
# Non-streaming test
def test_non_streaming_chat(openai_client):
"""Test non-streaming chat functionality with the local service"""
response = openai_client.chat.completions.create(
model="default",
messages=[
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": "List 3 countries and their capitals."},
],
temperature=1,
max_tokens=1024,
stream=False,
)
assert hasattr(response, "choices")
assert len(response.choices) > 0
assert hasattr(response.choices[0], "message")
assert hasattr(response.choices[0].message, "content")
# Streaming test
def test_streaming_chat(openai_client, capsys):
"""Test streaming chat functionality with the local service"""
response = openai_client.chat.completions.create(
model="default",
messages=[
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": "List 3 countries and their capitals."},
{
"role": "assistant",
"content": "China(Beijing), France(Paris), Australia(Canberra).",
},
{"role": "user", "content": "OK, tell more."},
],
temperature=1,
max_tokens=1024,
stream=True,
)
output = []
for chunk in response:
if hasattr(chunk.choices[0], "delta") and hasattr(chunk.choices[0].delta, "content"):
output.append(chunk.choices[0].delta.content)
assert len(output) > 2
# ==========================
# OpenAI Client completions Test
# ==========================
def test_non_streaming(openai_client):
"""Test non-streaming chat functionality with the local service"""
response = openai_client.completions.create(
model="default",
prompt="Hello, how are you?",
temperature=1,
max_tokens=1024,
stream=False,
)
# Assertions to check the response structure
assert hasattr(response, "choices")
assert len(response.choices) > 0
def test_streaming(openai_client, capsys):
"""Test streaming functionality with the local service"""
response = openai_client.completions.create(
model="default",
prompt="Hello, how are you?",
temperature=1,
max_tokens=1024,
stream=True,
)
# Collect streaming output
output = []
for chunk in response:
output.append(chunk.choices[0].text)
assert len(output) > 0