mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-27 18:41:02 +08:00
* [metrics] Add serveral observability metrics (#3868) * Add several observability metrics * [wenxin-tools-584] 【可观测性】支持查看本节点的并发数、剩余block_size、排队请求数等信息 * adjust some metrics and md files * trigger ci * adjust ci file * trigger ci * trigger ci --------- Co-authored-by: K11OntheBoat <your_email@example.com> Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com> * version adjust --------- Co-authored-by: K11OntheBoat <your_email@example.com> Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
637 lines
23 KiB
Python
637 lines
23 KiB
Python
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import concurrent.futures
|
|
import json
|
|
import os
|
|
import signal
|
|
import socket
|
|
import subprocess
|
|
import sys
|
|
import time
|
|
|
|
import openai
|
|
import pytest
|
|
import requests
|
|
from jsonschema import validate
|
|
|
|
# Read ports from environment variables; use default values if not set
|
|
FD_API_PORT = int(os.getenv("FD_API_PORT", 8188))
|
|
FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8133))
|
|
FD_METRICS_PORT = int(os.getenv("FD_METRICS_PORT", 8233))
|
|
|
|
# List of ports to clean before and after tests
|
|
PORTS_TO_CLEAN = [FD_API_PORT, FD_ENGINE_QUEUE_PORT, FD_METRICS_PORT]
|
|
|
|
|
|
def is_port_open(host: str, port: int, timeout=1.0):
|
|
"""
|
|
Check if a TCP port is open on the given host.
|
|
Returns True if connection succeeds, False otherwise.
|
|
"""
|
|
try:
|
|
with socket.create_connection((host, port), timeout):
|
|
return True
|
|
except Exception:
|
|
return False
|
|
|
|
|
|
def kill_process_on_port(port: int):
|
|
"""
|
|
Kill processes that are listening on the given port.
|
|
Uses `lsof` to find process ids and sends SIGKILL.
|
|
"""
|
|
try:
|
|
output = subprocess.check_output(f"lsof -i:{port} -t", shell=True).decode().strip()
|
|
for pid in output.splitlines():
|
|
os.kill(int(pid), signal.SIGKILL)
|
|
print(f"Killed process on port {port}, pid={pid}")
|
|
except subprocess.CalledProcessError:
|
|
pass
|
|
|
|
|
|
def clean_ports():
|
|
"""
|
|
Kill all processes occupying the ports listed in PORTS_TO_CLEAN.
|
|
"""
|
|
for port in PORTS_TO_CLEAN:
|
|
kill_process_on_port(port)
|
|
|
|
|
|
@pytest.fixture(scope="session", autouse=True)
|
|
def setup_and_run_server():
|
|
"""
|
|
Pytest fixture that runs once per test session:
|
|
- Cleans ports before tests
|
|
- Starts the API server as a subprocess
|
|
- Waits for server port to open (up to 30 seconds)
|
|
- Tears down server after all tests finish
|
|
"""
|
|
print("Pre-test port cleanup...")
|
|
clean_ports()
|
|
|
|
base_path = os.getenv("MODEL_PATH")
|
|
if base_path:
|
|
model_path = os.path.join(base_path, "Qwen2-7B-Instruct")
|
|
else:
|
|
model_path = "./Qwen2-7B-Instruct"
|
|
|
|
log_path = "server.log"
|
|
cmd = [
|
|
sys.executable,
|
|
"-m",
|
|
"fastdeploy.entrypoints.openai.api_server",
|
|
"--model",
|
|
model_path,
|
|
"--port",
|
|
str(FD_API_PORT),
|
|
"--tensor-parallel-size",
|
|
"1",
|
|
"--engine-worker-queue-port",
|
|
str(FD_ENGINE_QUEUE_PORT),
|
|
"--metrics-port",
|
|
str(FD_METRICS_PORT),
|
|
"--max-model-len",
|
|
"32768",
|
|
"--max-num-seqs",
|
|
"128",
|
|
"--quantization",
|
|
"wint8",
|
|
]
|
|
|
|
# Start subprocess in new process group
|
|
with open(log_path, "w") as logfile:
|
|
process = subprocess.Popen(
|
|
cmd,
|
|
stdout=logfile,
|
|
stderr=subprocess.STDOUT,
|
|
start_new_session=True, # Enables killing full group via os.killpg
|
|
)
|
|
|
|
# Wait up to 300 seconds for API server to be ready
|
|
for _ in range(300):
|
|
if is_port_open("127.0.0.1", FD_API_PORT):
|
|
print(f"API server is up on port {FD_API_PORT}")
|
|
break
|
|
time.sleep(1)
|
|
else:
|
|
print("[TIMEOUT] API server failed to start in 5 minutes. Cleaning up...")
|
|
try:
|
|
os.killpg(process.pid, signal.SIGTERM)
|
|
except Exception as e:
|
|
print(f"Failed to kill process group: {e}")
|
|
raise RuntimeError(f"API server did not start on port {FD_API_PORT}")
|
|
|
|
yield # Run tests
|
|
|
|
print("\n===== Post-test server cleanup... =====")
|
|
try:
|
|
os.killpg(process.pid, signal.SIGTERM)
|
|
print(f"API server (pid={process.pid}) terminated")
|
|
except Exception as e:
|
|
print(f"Failed to terminate API server: {e}")
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def api_url(request):
|
|
"""
|
|
Returns the API endpoint URL for chat completions.
|
|
"""
|
|
return f"http://0.0.0.0:{FD_API_PORT}/v1/chat/completions"
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def metrics_url(request):
|
|
"""
|
|
Returns the metrics endpoint URL.
|
|
"""
|
|
return f"http://0.0.0.0:{FD_METRICS_PORT}/metrics"
|
|
|
|
|
|
@pytest.fixture
|
|
def headers():
|
|
"""
|
|
Returns common HTTP request headers.
|
|
"""
|
|
return {"Content-Type": "application/json"}
|
|
|
|
|
|
@pytest.fixture
|
|
def consistent_payload():
|
|
"""
|
|
Returns a fixed payload for consistency testing,
|
|
including a fixed random seed and temperature.
|
|
"""
|
|
return {
|
|
"messages": [{"role": "user", "content": "用一句话介绍 PaddlePaddle"}],
|
|
"temperature": 0.9,
|
|
"top_p": 0, # fix top_p to reduce randomness
|
|
"seed": 13, # fixed random seed
|
|
}
|
|
|
|
|
|
# ==========================
|
|
# JSON Schema for validating chat API responses
|
|
# ==========================
|
|
chat_response_schema = {
|
|
"type": "object",
|
|
"properties": {
|
|
"id": {"type": "string"},
|
|
"object": {"type": "string"},
|
|
"created": {"type": "number"},
|
|
"model": {"type": "string"},
|
|
"choices": {
|
|
"type": "array",
|
|
"items": {
|
|
"type": "object",
|
|
"properties": {
|
|
"message": {
|
|
"type": "object",
|
|
"properties": {
|
|
"role": {"type": "string"},
|
|
"content": {"type": "string"},
|
|
},
|
|
"required": ["role", "content"],
|
|
},
|
|
"index": {"type": "number"},
|
|
"finish_reason": {"type": "string"},
|
|
},
|
|
"required": ["message", "index", "finish_reason"],
|
|
},
|
|
},
|
|
},
|
|
"required": ["id", "object", "created", "model", "choices"],
|
|
}
|
|
|
|
|
|
# ==========================
|
|
# Helper function to calculate difference rate between two texts
|
|
# ==========================
|
|
def calculate_diff_rate(text1, text2):
|
|
"""
|
|
Calculate the difference rate between two strings
|
|
based on the normalized Levenshtein edit distance.
|
|
Returns a float in [0,1], where 0 means identical.
|
|
"""
|
|
if text1 == text2:
|
|
return 0.0
|
|
|
|
len1, len2 = len(text1), len(text2)
|
|
dp = [[0] * (len2 + 1) for _ in range(len1 + 1)]
|
|
|
|
for i in range(len1 + 1):
|
|
for j in range(len2 + 1):
|
|
if i == 0 or j == 0:
|
|
dp[i][j] = i + j
|
|
elif text1[i - 1] == text2[j - 1]:
|
|
dp[i][j] = dp[i - 1][j - 1]
|
|
else:
|
|
dp[i][j] = 1 + min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1])
|
|
|
|
edit_distance = dp[len1][len2]
|
|
max_len = max(len1, len2)
|
|
return edit_distance / max_len if max_len > 0 else 0.0
|
|
|
|
|
|
# ==========================
|
|
# Valid prompt test cases for parameterized testing
|
|
# ==========================
|
|
valid_prompts = [
|
|
[{"role": "user", "content": "你好"}],
|
|
[{"role": "user", "content": "用一句话介绍 FastDeploy"}],
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize("messages", valid_prompts)
|
|
def test_valid_chat(messages, api_url, headers):
|
|
"""
|
|
Test valid chat requests.
|
|
"""
|
|
resp = requests.post(api_url, headers=headers, json={"messages": messages})
|
|
|
|
assert resp.status_code == 200
|
|
validate(instance=resp.json(), schema=chat_response_schema)
|
|
|
|
|
|
# ==========================
|
|
# Consistency test for repeated runs with fixed payload
|
|
# ==========================
|
|
def test_consistency_between_runs(api_url, headers, consistent_payload):
|
|
"""
|
|
Test that two runs with the same fixed input produce similar outputs.
|
|
"""
|
|
# First request
|
|
resp1 = requests.post(api_url, headers=headers, json=consistent_payload)
|
|
assert resp1.status_code == 200
|
|
result1 = resp1.json()
|
|
content1 = result1["choices"][0]["message"]["content"]
|
|
|
|
# Second request
|
|
resp2 = requests.post(api_url, headers=headers, json=consistent_payload)
|
|
assert resp2.status_code == 200
|
|
result2 = resp2.json()
|
|
content2 = result2["choices"][0]["message"]["content"]
|
|
|
|
# Calculate difference rate
|
|
diff_rate = calculate_diff_rate(content1, content2)
|
|
|
|
# Verify that the difference rate is below the threshold
|
|
assert diff_rate < 0.05, f"Output difference too large ({diff_rate:.4%})"
|
|
|
|
|
|
# ==========================
|
|
# Invalid prompt tests
|
|
# ==========================
|
|
|
|
invalid_prompts = [
|
|
[], # Empty array
|
|
[{}], # Empty object
|
|
[{"role": "user"}], # Missing content
|
|
[{"content": "hello"}], # Missing role
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize("messages", invalid_prompts)
|
|
def test_invalid_chat(messages, api_url, headers):
|
|
"""
|
|
Test invalid chat inputs
|
|
"""
|
|
resp = requests.post(api_url, headers=headers, json={"messages": messages})
|
|
assert resp.status_code >= 400, "Invalid request should return an error status code"
|
|
|
|
|
|
# ==========================
|
|
# Test for input exceeding context length
|
|
# ==========================
|
|
|
|
|
|
def test_exceed_context_length(api_url, headers):
|
|
"""
|
|
Test case for inputs that exceed the model's maximum context length.
|
|
"""
|
|
# Construct an overly long message
|
|
long_content = "你好," * 20000
|
|
|
|
messages = [{"role": "user", "content": long_content}]
|
|
|
|
resp = requests.post(api_url, headers=headers, json={"messages": messages})
|
|
|
|
# Check if the response indicates a token limit error or server error (500)
|
|
try:
|
|
response_json = resp.json()
|
|
except Exception:
|
|
response_json = {}
|
|
|
|
# Check status code and response content
|
|
assert (
|
|
resp.status_code != 200 or "token" in json.dumps(response_json).lower()
|
|
), f"Expected token limit error or similar, but got a normal response: {response_json}"
|
|
|
|
|
|
# ==========================
|
|
# Multi-turn Conversation Test
|
|
# ==========================
|
|
def test_multi_turn_conversation(api_url, headers):
|
|
"""
|
|
Test whether multi-turn conversation context is effective.
|
|
"""
|
|
messages = [
|
|
{"role": "user", "content": "你是谁?"},
|
|
{"role": "assistant", "content": "我是AI助手"},
|
|
{"role": "user", "content": "你能做什么?"},
|
|
]
|
|
resp = requests.post(api_url, headers=headers, json={"messages": messages})
|
|
assert resp.status_code == 200
|
|
validate(instance=resp.json(), schema=chat_response_schema)
|
|
|
|
|
|
# ==========================
|
|
# Concurrent Performance Test
|
|
# ==========================
|
|
def test_concurrent_perf(api_url, headers):
|
|
"""
|
|
Send concurrent requests to test stability and response time.
|
|
"""
|
|
prompts = [{"role": "user", "content": "Introduce FastDeploy."}]
|
|
|
|
def send_request():
|
|
"""
|
|
Send a single request
|
|
"""
|
|
resp = requests.post(api_url, headers=headers, json={"messages": prompts})
|
|
assert resp.status_code == 200
|
|
return resp.elapsed.total_seconds()
|
|
|
|
with concurrent.futures.ThreadPoolExecutor(max_workers=8) as executor:
|
|
futures = [executor.submit(send_request) for _ in range(8)]
|
|
durations = [f.result() for f in futures]
|
|
|
|
print("\nResponse time for each request:", durations)
|
|
|
|
|
|
# ==========================
|
|
# Metrics Endpoint Test
|
|
# ==========================
|
|
|
|
|
|
def test_metrics_endpoint(metrics_url):
|
|
"""
|
|
Test the metrics monitoring endpoint.
|
|
"""
|
|
resp = requests.get(metrics_url, timeout=5)
|
|
|
|
assert resp.status_code == 200, f"Unexpected status code: {resp.status_code}"
|
|
assert "text/plain" in resp.headers["Content-Type"], "Content-Type is not text/plain"
|
|
|
|
# Parse Prometheus metrics data
|
|
metrics_data = resp.text
|
|
lines = metrics_data.split("\n")
|
|
|
|
metric_lines = [line for line in lines if not line.startswith("#") and line.strip() != ""]
|
|
|
|
# 断言 具体值
|
|
num_requests_running_found = False
|
|
num_requests_waiting_found = False
|
|
time_to_first_token_seconds_sum_found = False
|
|
time_per_output_token_seconds_sum_found = False
|
|
e2e_request_latency_seconds_sum_found = False
|
|
request_inference_time_seconds_sum_found = False
|
|
request_queue_time_seconds_sum_found = False
|
|
request_prefill_time_seconds_sum_found = False
|
|
request_decode_time_seconds_sum_found = False
|
|
prompt_tokens_total_found = False
|
|
generation_tokens_total_found = False
|
|
request_prompt_tokens_sum_found = False
|
|
request_generation_tokens_sum_found = False
|
|
gpu_cache_usage_perc_found = False
|
|
request_params_max_tokens_sum_found = False
|
|
request_success_total_found = False
|
|
cache_config_info_found = False
|
|
available_batch_size_found = False
|
|
hit_req_rate_found = False
|
|
hit_token_rate_found = False
|
|
cpu_hit_token_rate_found = False
|
|
gpu_hit_token_rate_found = False
|
|
|
|
for line in metric_lines:
|
|
if line.startswith("fastdeploy:num_requests_running"):
|
|
_, value = line.rsplit(" ", 1)
|
|
assert float(value) >= 0, "num_requests_running 值错误"
|
|
num_requests_running_found = True
|
|
elif line.startswith("fastdeploy:num_requests_waiting"):
|
|
_, value = line.rsplit(" ", 1)
|
|
num_requests_waiting_found = True
|
|
assert float(value) >= 0, "num_requests_waiting 值错误"
|
|
elif line.startswith("fastdeploy:time_to_first_token_seconds_sum"):
|
|
_, value = line.rsplit(" ", 1)
|
|
assert float(value) >= 0, "time_to_first_token_seconds_sum 值错误"
|
|
time_to_first_token_seconds_sum_found = True
|
|
elif line.startswith("fastdeploy:time_per_output_token_seconds_sum"):
|
|
_, value = line.rsplit(" ", 1)
|
|
assert float(value) >= 0, "time_per_output_token_seconds_sum 值错误"
|
|
time_per_output_token_seconds_sum_found = True
|
|
elif line.startswith("fastdeploy:e2e_request_latency_seconds_sum"):
|
|
_, value = line.rsplit(" ", 1)
|
|
assert float(value) >= 0, "e2e_request_latency_seconds_sum_found 值错误"
|
|
e2e_request_latency_seconds_sum_found = True
|
|
elif line.startswith("fastdeploy:request_inference_time_seconds_sum"):
|
|
_, value = line.rsplit(" ", 1)
|
|
assert float(value) >= 0, "request_inference_time_seconds_sum 值错误"
|
|
request_inference_time_seconds_sum_found = True
|
|
elif line.startswith("fastdeploy:request_queue_time_seconds_sum"):
|
|
_, value = line.rsplit(" ", 1)
|
|
assert float(value) >= 0, "request_queue_time_seconds_sum 值错误"
|
|
request_queue_time_seconds_sum_found = True
|
|
elif line.startswith("fastdeploy:request_prefill_time_seconds_sum"):
|
|
_, value = line.rsplit(" ", 1)
|
|
assert float(value) >= 0, "request_prefill_time_seconds_sum 值错误"
|
|
request_prefill_time_seconds_sum_found = True
|
|
elif line.startswith("fastdeploy:request_decode_time_seconds_sum"):
|
|
_, value = line.rsplit(" ", 1)
|
|
assert float(value) >= 0, "request_decode_time_seconds_sum 值错误"
|
|
request_decode_time_seconds_sum_found = True
|
|
elif line.startswith("fastdeploy:prompt_tokens_total"):
|
|
_, value = line.rsplit(" ", 1)
|
|
assert float(value) >= 0, "prompt_tokens_total 值错误"
|
|
prompt_tokens_total_found = True
|
|
elif line.startswith("fastdeploy:generation_tokens_total"):
|
|
_, value = line.rsplit(" ", 1)
|
|
assert float(value) >= 0, "generation_tokens_total 值错误"
|
|
generation_tokens_total_found = True
|
|
elif line.startswith("fastdeploy:request_prompt_tokens_sum"):
|
|
_, value = line.rsplit(" ", 1)
|
|
assert float(value) >= 0, "request_prompt_tokens_sum 值错误"
|
|
request_prompt_tokens_sum_found = True
|
|
elif line.startswith("fastdeploy:request_generation_tokens_sum"):
|
|
_, value = line.rsplit(" ", 1)
|
|
assert float(value) >= 0, "request_generation_tokens_sum 值错误"
|
|
request_generation_tokens_sum_found = True
|
|
elif line.startswith("fastdeploy:gpu_cache_usage_perc"):
|
|
_, value = line.rsplit(" ", 1)
|
|
assert float(value) >= 0, "gpu_cache_usage_perc 值错误"
|
|
gpu_cache_usage_perc_found = True
|
|
elif line.startswith("fastdeploy:request_params_max_tokens_sum"):
|
|
_, value = line.rsplit(" ", 1)
|
|
assert float(value) >= 0, "request_params_max_tokens_sum 值错误"
|
|
request_params_max_tokens_sum_found = True
|
|
elif line.startswith("fastdeploy:request_success_total"):
|
|
_, value = line.rsplit(" ", 1)
|
|
assert float(value) >= 0, "request_success_total 值错误"
|
|
request_success_total_found = True
|
|
elif line.startswith("fastdeploy:cache_config_info"):
|
|
_, value = line.rsplit(" ", 1)
|
|
assert float(value) >= 0, "cache_config_info 值错误"
|
|
cache_config_info_found = True
|
|
elif line.startswith("fastdeploy:available_batch_size"):
|
|
_, value = line.rsplit(" ", 1)
|
|
assert float(value) >= 0, "available_batch_size 值错误"
|
|
available_batch_size_found = True
|
|
elif line.startswith("fastdeploy:hit_req_rate"):
|
|
_, value = line.rsplit(" ", 1)
|
|
assert float(value) >= 0, "hit_req_rate 值错误"
|
|
hit_req_rate_found = True
|
|
elif line.startswith("fastdeploy:hit_token_rate"):
|
|
_, value = line.rsplit(" ", 1)
|
|
assert float(value) >= 0, "hit_token_rate 值错误"
|
|
hit_token_rate_found = True
|
|
elif line.startswith("fastdeploy:cpu_hit_token_rate"):
|
|
_, value = line.rsplit(" ", 1)
|
|
assert float(value) >= 0, "cpu_hit_token_rate 值错误"
|
|
cpu_hit_token_rate_found = True
|
|
elif line.startswith("fastdeploy:gpu_hit_token_rate"):
|
|
_, value = line.rsplit(" ", 1)
|
|
assert float(value) >= 0, "gpu_hit_token_rate 值错误"
|
|
gpu_hit_token_rate_found = True
|
|
assert num_requests_running_found, "缺少 fastdeploy:num_requests_running 指标"
|
|
assert num_requests_waiting_found, "缺少 fastdeploy:num_requests_waiting 指标"
|
|
assert time_to_first_token_seconds_sum_found, "缺少 fastdeploy:time_to_first_token_seconds_sum 指标"
|
|
assert time_per_output_token_seconds_sum_found, "缺少 fastdeploy:time_per_output_token_seconds_sum 指标"
|
|
assert e2e_request_latency_seconds_sum_found, "缺少 fastdeploy:e2e_request_latency_seconds_sum_found 指标"
|
|
assert request_inference_time_seconds_sum_found, "缺少 fastdeploy:request_inference_time_seconds_sum 指标"
|
|
assert request_queue_time_seconds_sum_found, "缺少 fastdeploy:request_queue_time_seconds_sum 指标"
|
|
assert request_prefill_time_seconds_sum_found, "缺少 fastdeploy:request_prefill_time_seconds_sum 指标"
|
|
assert request_decode_time_seconds_sum_found, "缺少 fastdeploy:request_decode_time_seconds_sum 指标"
|
|
assert prompt_tokens_total_found, "缺少 fastdeploy:prompt_tokens_total 指标"
|
|
assert generation_tokens_total_found, "缺少 fastdeploy:generation_tokens_total 指标"
|
|
assert request_prompt_tokens_sum_found, "缺少 fastdeploy:request_prompt_tokens_sum 指标"
|
|
assert request_generation_tokens_sum_found, "缺少 fastdeploy:request_generation_tokens_sum 指标"
|
|
assert gpu_cache_usage_perc_found, "缺少 fastdeploy:gpu_cache_usage_perc 指标"
|
|
assert request_params_max_tokens_sum_found, "缺少 fastdeploy:request_params_max_tokens_sum 指标"
|
|
assert request_success_total_found, "缺少 fastdeploy:request_success_total 指标"
|
|
assert cache_config_info_found, "缺少 fastdeploy:cache_config_info 指标"
|
|
assert available_batch_size_found, "缺少 fastdeploy:available_batch_size 指标"
|
|
assert hit_req_rate_found, "缺少 fastdeploy:hit_req_rate 指标"
|
|
assert hit_token_rate_found, "缺少 fastdeploy:hit_token_rate 指标"
|
|
assert cpu_hit_token_rate_found, "缺少 fastdeploy:hit_token_rate 指标"
|
|
assert gpu_hit_token_rate_found, "缺少 fastdeploy:gpu_hit_token_rate 指标"
|
|
|
|
|
|
# ==========================
|
|
# OpenAI Client chat.completions Test
|
|
# ==========================
|
|
|
|
|
|
@pytest.fixture
|
|
def openai_client():
|
|
ip = "0.0.0.0"
|
|
service_http_port = str(FD_API_PORT)
|
|
client = openai.Client(
|
|
base_url=f"http://{ip}:{service_http_port}/v1",
|
|
api_key="EMPTY_API_KEY",
|
|
)
|
|
return client
|
|
|
|
|
|
# Non-streaming test
|
|
def test_non_streaming_chat(openai_client):
|
|
"""Test non-streaming chat functionality with the local service"""
|
|
response = openai_client.chat.completions.create(
|
|
model="default",
|
|
messages=[
|
|
{"role": "system", "content": "You are a helpful AI assistant."},
|
|
{"role": "user", "content": "List 3 countries and their capitals."},
|
|
],
|
|
temperature=1,
|
|
max_tokens=1024,
|
|
stream=False,
|
|
)
|
|
|
|
assert hasattr(response, "choices")
|
|
assert len(response.choices) > 0
|
|
assert hasattr(response.choices[0], "message")
|
|
assert hasattr(response.choices[0].message, "content")
|
|
|
|
|
|
# Streaming test
|
|
def test_streaming_chat(openai_client, capsys):
|
|
"""Test streaming chat functionality with the local service"""
|
|
response = openai_client.chat.completions.create(
|
|
model="default",
|
|
messages=[
|
|
{"role": "system", "content": "You are a helpful AI assistant."},
|
|
{"role": "user", "content": "List 3 countries and their capitals."},
|
|
{
|
|
"role": "assistant",
|
|
"content": "China(Beijing), France(Paris), Australia(Canberra).",
|
|
},
|
|
{"role": "user", "content": "OK, tell more."},
|
|
],
|
|
temperature=1,
|
|
max_tokens=1024,
|
|
stream=True,
|
|
)
|
|
|
|
output = []
|
|
for chunk in response:
|
|
if hasattr(chunk.choices[0], "delta") and hasattr(chunk.choices[0].delta, "content"):
|
|
output.append(chunk.choices[0].delta.content)
|
|
assert len(output) > 2
|
|
|
|
|
|
# ==========================
|
|
# OpenAI Client completions Test
|
|
# ==========================
|
|
|
|
|
|
def test_non_streaming(openai_client):
|
|
"""Test non-streaming chat functionality with the local service"""
|
|
response = openai_client.completions.create(
|
|
model="default",
|
|
prompt="Hello, how are you?",
|
|
temperature=1,
|
|
max_tokens=1024,
|
|
stream=False,
|
|
)
|
|
|
|
# Assertions to check the response structure
|
|
assert hasattr(response, "choices")
|
|
assert len(response.choices) > 0
|
|
|
|
|
|
def test_streaming(openai_client, capsys):
|
|
"""Test streaming functionality with the local service"""
|
|
response = openai_client.completions.create(
|
|
model="default",
|
|
prompt="Hello, how are you?",
|
|
temperature=1,
|
|
max_tokens=1024,
|
|
stream=True,
|
|
)
|
|
|
|
# Collect streaming output
|
|
output = []
|
|
for chunk in response:
|
|
output.append(chunk.choices[0].text)
|
|
assert len(output) > 0
|