mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-27 04:46:16 +08:00

* remove max_num_batched_tokens in parallel config * remove max_num_seqs * update test case * fix test * fix --------- Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
131 lines
5.7 KiB
Python
131 lines
5.7 KiB
Python
from dataclasses import asdict
|
|
from types import SimpleNamespace
|
|
|
|
from fastdeploy.config import CacheConfig, FDConfig, ParallelConfig, SchedulerConfig
|
|
from fastdeploy.engine.args_utils import EngineArgs
|
|
from fastdeploy.engine.request import Request
|
|
from fastdeploy.engine.sched.resource_manager_v1 import ResourceManagerV1
|
|
|
|
|
|
def test_normal_schedule():
|
|
max_num_seqs = 3
|
|
engine_args = EngineArgs(max_num_seqs=max_num_seqs, num_gpu_blocks_override=160, max_num_batched_tokens=3200)
|
|
args = asdict(engine_args)
|
|
cache_cfg = CacheConfig(args)
|
|
model_cfg = SimpleNamespace(enable_mm=False)
|
|
speculative_cfg = SimpleNamespace(method=None)
|
|
model_cfg.print = print
|
|
cache_cfg.bytes_per_layer_per_block = 1
|
|
parallel_cfg = ParallelConfig(args)
|
|
scheduler_cfg = SchedulerConfig(args)
|
|
graph_opt_cfg = engine_args.create_graph_optimization_config()
|
|
fd_config = FDConfig(
|
|
model_config=model_cfg,
|
|
cache_config=cache_cfg,
|
|
parallel_config=parallel_cfg,
|
|
speculative_config=speculative_cfg,
|
|
graph_opt_config=graph_opt_cfg,
|
|
scheduler_config=scheduler_cfg,
|
|
)
|
|
resource_manager_v1 = ResourceManagerV1(
|
|
max_num_seqs=max_num_seqs, config=fd_config, tensor_parallel_size=8, splitwise_role="mixed"
|
|
)
|
|
req1 = Request.from_dict({"request_id": "req1", "prompt_token_ids": [1] * 3199, "prompt_token_ids_len": 3199})
|
|
req2 = Request.from_dict({"request_id": "req2", "prompt_token_ids": [2] * 3201, "prompt_token_ids_len": 3201})
|
|
req3 = Request.from_dict({"request_id": "req3", "prompt_token_ids": [3] * 3200, "prompt_token_ids_len": 3200})
|
|
resource_manager_v1.add_request(req1)
|
|
resource_manager_v1.add_request(req2)
|
|
resource_manager_v1.add_request(req3)
|
|
# step 1
|
|
assert len(resource_manager_v1.waiting) == 3
|
|
scheduler_reqs = resource_manager_v1.schedule()
|
|
assert len(scheduler_reqs) == 2
|
|
assert scheduler_reqs[0].request_id == "req1"
|
|
assert scheduler_reqs[1].request_id == "req2"
|
|
assert scheduler_reqs[0].prefill_start_index == 0
|
|
assert scheduler_reqs[1].prefill_start_index == 0
|
|
assert scheduler_reqs[0].prefill_end_index == 3199
|
|
assert scheduler_reqs[1].prefill_end_index == 1
|
|
assert len(resource_manager_v1.running) == 2
|
|
assert len(resource_manager_v1.waiting) == 1
|
|
# step 2
|
|
scheduler_reqs = resource_manager_v1.schedule()
|
|
assert len(scheduler_reqs) == 2
|
|
assert scheduler_reqs[0].request_id == "req1"
|
|
assert len(scheduler_reqs[0].block_tables) == 52
|
|
assert scheduler_reqs[1].request_id == "req2"
|
|
assert scheduler_reqs[1].prefill_start_index == 1
|
|
assert scheduler_reqs[1].prefill_end_index == 3200
|
|
assert len(resource_manager_v1.running) == 2
|
|
assert len(resource_manager_v1.waiting) == 1
|
|
# step 3
|
|
scheduler_reqs = resource_manager_v1.schedule()
|
|
assert len(scheduler_reqs) == 2
|
|
assert scheduler_reqs[0].request_id == "req2"
|
|
assert scheduler_reqs[0].prefill_start_index == 3200
|
|
assert scheduler_reqs[0].prefill_end_index == 3201
|
|
assert scheduler_reqs[1].request_id == "req3"
|
|
assert scheduler_reqs[1].prefill_start_index == 0
|
|
assert scheduler_reqs[1].prefill_end_index == 3199
|
|
assert len(resource_manager_v1.running) == 3
|
|
assert len(resource_manager_v1.waiting) == 0
|
|
|
|
|
|
def test_preempted_request():
|
|
max_num_seqs = 2
|
|
engine_args = EngineArgs(max_num_seqs=max_num_seqs, num_gpu_blocks_override=52, max_num_batched_tokens=3200)
|
|
args = asdict(engine_args)
|
|
cache_cfg = CacheConfig(args)
|
|
model_cfg = SimpleNamespace(enable_mm=False)
|
|
speculative_cfg = SimpleNamespace(method=None)
|
|
model_cfg.print = print
|
|
cache_cfg.bytes_per_layer_per_block = 1
|
|
parallel_cfg = ParallelConfig(args)
|
|
scheduler_cfg = SchedulerConfig(args)
|
|
graph_opt_cfg = engine_args.create_graph_optimization_config()
|
|
fd_config = FDConfig(
|
|
model_config=model_cfg,
|
|
cache_config=cache_cfg,
|
|
parallel_config=parallel_cfg,
|
|
graph_opt_config=graph_opt_cfg,
|
|
speculative_config=speculative_cfg,
|
|
scheduler_config=scheduler_cfg,
|
|
)
|
|
resource_manager_v1 = ResourceManagerV1(
|
|
max_num_seqs=max_num_seqs, config=fd_config, tensor_parallel_size=8, splitwise_role="mixed"
|
|
)
|
|
req1 = Request.from_dict({"request_id": "req1", "prompt_token_ids": [1] * 3200, "prompt_token_ids_len": 3200})
|
|
req2 = Request.from_dict({"request_id": "req2", "prompt_token_ids": [2] * 3200, "prompt_token_ids_len": 3200})
|
|
resource_manager_v1.add_request(req1)
|
|
resource_manager_v1.add_request(req2)
|
|
# step 1
|
|
assert len(resource_manager_v1.waiting) == 2
|
|
scheduler_reqs = resource_manager_v1.schedule()
|
|
assert len(scheduler_reqs) == 1
|
|
assert scheduler_reqs[0].request_id == "req1"
|
|
assert scheduler_reqs[0].prefill_start_index == 0
|
|
assert scheduler_reqs[0].prefill_end_index == 3200
|
|
assert len(resource_manager_v1.running) == 1
|
|
assert len(resource_manager_v1.waiting) == 1
|
|
# step 2
|
|
scheduler_reqs = resource_manager_v1.schedule()
|
|
assert len(scheduler_reqs) == 1
|
|
assert scheduler_reqs[0].request_id == "req1"
|
|
assert len(scheduler_reqs[0].block_tables) == 52
|
|
# step 3
|
|
req1.output_token_ids.extend([1] * 128)
|
|
scheduler_reqs = resource_manager_v1.schedule()
|
|
assert len(scheduler_reqs) == 1
|
|
assert scheduler_reqs[0].request_id == "req1"
|
|
assert len(resource_manager_v1.running) == 0
|
|
# to be added into waiting queue
|
|
assert len(resource_manager_v1.waiting) == 1
|
|
# mock token_processor to add into waiting
|
|
resource_manager_v1.waiting.appendleft(req1)
|
|
# step 4
|
|
scheduler_reqs = resource_manager_v1.schedule()
|
|
assert len(scheduler_reqs) == 1
|
|
assert scheduler_reqs[0].request_id == "req1"
|
|
assert len(resource_manager_v1.running) == 1
|
|
assert len(resource_manager_v1.waiting) == 1
|