Files
FastDeploy/tests/graph_optimization/test_graph_opt_backend.py
YuanRisheng 2e9e53ff7e [FDConfig]Remove max_num_batched_tokens/max_num_seqs in parallel config (#4116)
* remove max_num_batched_tokens in parallel config

* remove max_num_seqs

* update test case

* fix test

* fix

---------

Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
2025-09-17 10:43:35 +08:00

204 lines
7.1 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import unittest
import numpy as np
import paddle
import paddle.nn as nn
from fastdeploy.config import (
CacheConfig,
FDConfig,
GraphOptimizationConfig,
ParallelConfig,
SchedulerConfig,
)
from fastdeploy.model_executor.forward_meta import ForwardMeta
from fastdeploy.model_executor.graph_optimization.decorator import (
support_graph_optimization,
)
@support_graph_optimization
class Attention(nn.Layer):
def __init__(self, fd_config: FDConfig) -> None:
super().__init__()
paddle.seed(2024)
self.embed_tokens = nn.Embedding(num_embeddings=100, embedding_dim=32)
self.qkv_proj = nn.Linear(32, 64)
self.attn = nn.MultiHeadAttention(embed_dim=64, num_heads=1)
self.o_proj = nn.Linear(64, 32)
def forward(
self,
ids_remove_padding,
forward_meta: ForwardMeta,
):
hidden_states = self.embed_tokens(forward_meta.ids_remove_padding)
qkv_out = self.qkv_proj(hidden_states)
attn_out = self.attn(qkv_out)
output = self.o_proj(attn_out)
return output
def forward_dynamic(
self,
ids_remove_padding,
forward_meta: ForwardMeta,
):
hidden_states = self.embed_tokens(forward_meta.ids_remove_padding)
qkv_out = self.qkv_proj(hidden_states)
attn_out = self.attn(qkv_out)
output = self.o_proj(attn_out)
return output
class TestGraphOptBackend(unittest.TestCase):
"""
Test graph_opt_backend
"""
def setUp(self):
"""Set up test fixtures, compute baseline once for all tests"""
# Setup common test data that will be reused across all tests
self.input_shape = (4, 8)
self.dtype = "int32"
self.model_config = {}
self.max_num_seqs = 1
# Create baseline configuration (dynamic graph, no cudagraph)
baseline_graph_opt_config = GraphOptimizationConfig(args={})
baseline_graph_opt_config.use_cudagraph = False
baseline_graph_opt_config.graph_opt_level = 0
baseline_scheduler_config = SchedulerConfig(args={})
baseline_scheduler_config.max_num_seqs = self.max_num_seqs
baseline_cache_config = CacheConfig({})
baseline_parallel_config = ParallelConfig(args={})
self.baseline_fd_config = FDConfig(
graph_opt_config=baseline_graph_opt_config,
scheduler_config=baseline_scheduler_config,
cache_config=baseline_cache_config,
parallel_config=baseline_parallel_config,
test_mode=True,
)
# Create input data
self.input_tensor = paddle.randint(32, shape=self.input_shape, dtype=self.dtype)
self.forward_meta = ForwardMeta(
input_ids=self.input_tensor, ids_remove_padding=self.input_tensor, step_use_cudagraph=True
)
# Compute baseline result once
baseline_model = Attention(fd_config=self.baseline_fd_config, **self.model_config)
self.baseline_result = baseline_model.forward_dynamic(
ids_remove_padding=self.input_tensor, forward_meta=self.forward_meta
).numpy()
def _setup_test_config(
self,
graph_opt_level=0,
use_cudagraph=False,
):
"""Helper method: Setup test configuration for specific optimization mode
Args:
graph_opt_level (int): Graph optimization level (0: dynamic, 1: static, 2: cinn)
use_cudagraph (bool): Whether to use cudagraph
Returns:
FDConfig: Configured FDConfig for testing
"""
# Setup graph optimization config
graph_opt_config = GraphOptimizationConfig(args={})
graph_opt_config.use_cudagraph = use_cudagraph
graph_opt_config.graph_opt_level = graph_opt_level
# Setup parallel config
scheduler_config = SchedulerConfig(args={})
scheduler_config.max_num_seqs = self.max_num_seqs
# Setup cache config
cache_config = CacheConfig({})
parallel_config = ParallelConfig(args={})
# Create FD config
return FDConfig(
graph_opt_config=graph_opt_config,
scheduler_config=scheduler_config,
cache_config=cache_config,
parallel_config=parallel_config,
test_mode=True,
)
def _run_model_test(self, fd_config, test_name, compare_with_baseline=True):
"""Helper method: Run model test and validate results
Args:
fd_config: FastDeploy configuration
test_name (str): Test name for error reporting
compare_with_baseline (bool): Whether to compare with baseline result
"""
test_model = Attention(fd_config=fd_config, **self.model_config)
# Run model test
output = test_model(ids_remove_padding=self.input_tensor, forward_meta=self.forward_meta)
# Validate results if comparison is requested
if compare_with_baseline:
np.testing.assert_allclose(
self.baseline_result, output.numpy(), err_msg=f"Test {test_name} failed: output mismatch"
)
def test_dynamic_graph(self):
"""Test dynamic graph mode"""
fd_config = self._setup_test_config(graph_opt_level=0, use_cudagraph=False)
self._run_model_test(fd_config, "dynamic_graph", compare_with_baseline=False)
def test_static_graph(self):
"""Test static graph mode"""
fd_config = self._setup_test_config(graph_opt_level=1, use_cudagraph=False)
self._run_model_test(fd_config, "static_graph")
def test_cinn_graph(self):
"""Test CINN optimization mode"""
# Note: CINN is not opened yet
fd_config = self._setup_test_config(graph_opt_level=2, use_cudagraph=False)
self._run_model_test(fd_config, "cinn_graph")
def test_dynamic_graph_with_cudagraph(self):
"""Test dynamic graph + CudaGraph mode"""
fd_config = self._setup_test_config(graph_opt_level=0, use_cudagraph=True)
self._run_model_test(fd_config, "dynamic_graph_cudagraph")
def test_static_graph_with_cudagraph(self):
"""Test static graph + CudaGraph mode"""
fd_config = self._setup_test_config(graph_opt_level=1, use_cudagraph=True)
self._run_model_test(fd_config, "static_graph_cudagraph")
def test_cinn_graph_with_cudagraph(self):
"""Test CINN + CudaGraph mode"""
# Note: CINN is not opened yet
fd_config = self._setup_test_config(graph_opt_level=2, use_cudagraph=True)
self._run_model_test(fd_config, "cinn_graph_cudagraph")
if __name__ == "__main__":
unittest.main()