mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-28 21:32:29 +08:00

* remove max_num_batched_tokens in parallel config * remove max_num_seqs * update test case * fix test * fix --------- Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
204 lines
7.1 KiB
Python
204 lines
7.1 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import paddle
|
|
import paddle.nn as nn
|
|
|
|
from fastdeploy.config import (
|
|
CacheConfig,
|
|
FDConfig,
|
|
GraphOptimizationConfig,
|
|
ParallelConfig,
|
|
SchedulerConfig,
|
|
)
|
|
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
|
from fastdeploy.model_executor.graph_optimization.decorator import (
|
|
support_graph_optimization,
|
|
)
|
|
|
|
|
|
@support_graph_optimization
|
|
class Attention(nn.Layer):
|
|
def __init__(self, fd_config: FDConfig) -> None:
|
|
super().__init__()
|
|
paddle.seed(2024)
|
|
self.embed_tokens = nn.Embedding(num_embeddings=100, embedding_dim=32)
|
|
self.qkv_proj = nn.Linear(32, 64)
|
|
self.attn = nn.MultiHeadAttention(embed_dim=64, num_heads=1)
|
|
self.o_proj = nn.Linear(64, 32)
|
|
|
|
def forward(
|
|
self,
|
|
ids_remove_padding,
|
|
forward_meta: ForwardMeta,
|
|
):
|
|
hidden_states = self.embed_tokens(forward_meta.ids_remove_padding)
|
|
qkv_out = self.qkv_proj(hidden_states)
|
|
attn_out = self.attn(qkv_out)
|
|
output = self.o_proj(attn_out)
|
|
|
|
return output
|
|
|
|
def forward_dynamic(
|
|
self,
|
|
ids_remove_padding,
|
|
forward_meta: ForwardMeta,
|
|
):
|
|
hidden_states = self.embed_tokens(forward_meta.ids_remove_padding)
|
|
qkv_out = self.qkv_proj(hidden_states)
|
|
attn_out = self.attn(qkv_out)
|
|
output = self.o_proj(attn_out)
|
|
|
|
return output
|
|
|
|
|
|
class TestGraphOptBackend(unittest.TestCase):
|
|
"""
|
|
Test graph_opt_backend
|
|
"""
|
|
|
|
def setUp(self):
|
|
"""Set up test fixtures, compute baseline once for all tests"""
|
|
# Setup common test data that will be reused across all tests
|
|
self.input_shape = (4, 8)
|
|
self.dtype = "int32"
|
|
self.model_config = {}
|
|
self.max_num_seqs = 1
|
|
|
|
# Create baseline configuration (dynamic graph, no cudagraph)
|
|
baseline_graph_opt_config = GraphOptimizationConfig(args={})
|
|
baseline_graph_opt_config.use_cudagraph = False
|
|
baseline_graph_opt_config.graph_opt_level = 0
|
|
|
|
baseline_scheduler_config = SchedulerConfig(args={})
|
|
baseline_scheduler_config.max_num_seqs = self.max_num_seqs
|
|
|
|
baseline_cache_config = CacheConfig({})
|
|
baseline_parallel_config = ParallelConfig(args={})
|
|
self.baseline_fd_config = FDConfig(
|
|
graph_opt_config=baseline_graph_opt_config,
|
|
scheduler_config=baseline_scheduler_config,
|
|
cache_config=baseline_cache_config,
|
|
parallel_config=baseline_parallel_config,
|
|
test_mode=True,
|
|
)
|
|
|
|
# Create input data
|
|
self.input_tensor = paddle.randint(32, shape=self.input_shape, dtype=self.dtype)
|
|
self.forward_meta = ForwardMeta(
|
|
input_ids=self.input_tensor, ids_remove_padding=self.input_tensor, step_use_cudagraph=True
|
|
)
|
|
|
|
# Compute baseline result once
|
|
baseline_model = Attention(fd_config=self.baseline_fd_config, **self.model_config)
|
|
self.baseline_result = baseline_model.forward_dynamic(
|
|
ids_remove_padding=self.input_tensor, forward_meta=self.forward_meta
|
|
).numpy()
|
|
|
|
def _setup_test_config(
|
|
self,
|
|
graph_opt_level=0,
|
|
use_cudagraph=False,
|
|
):
|
|
"""Helper method: Setup test configuration for specific optimization mode
|
|
|
|
Args:
|
|
graph_opt_level (int): Graph optimization level (0: dynamic, 1: static, 2: cinn)
|
|
use_cudagraph (bool): Whether to use cudagraph
|
|
|
|
Returns:
|
|
FDConfig: Configured FDConfig for testing
|
|
"""
|
|
# Setup graph optimization config
|
|
graph_opt_config = GraphOptimizationConfig(args={})
|
|
graph_opt_config.use_cudagraph = use_cudagraph
|
|
graph_opt_config.graph_opt_level = graph_opt_level
|
|
|
|
# Setup parallel config
|
|
scheduler_config = SchedulerConfig(args={})
|
|
scheduler_config.max_num_seqs = self.max_num_seqs
|
|
|
|
# Setup cache config
|
|
cache_config = CacheConfig({})
|
|
parallel_config = ParallelConfig(args={})
|
|
|
|
# Create FD config
|
|
return FDConfig(
|
|
graph_opt_config=graph_opt_config,
|
|
scheduler_config=scheduler_config,
|
|
cache_config=cache_config,
|
|
parallel_config=parallel_config,
|
|
test_mode=True,
|
|
)
|
|
|
|
def _run_model_test(self, fd_config, test_name, compare_with_baseline=True):
|
|
"""Helper method: Run model test and validate results
|
|
|
|
Args:
|
|
fd_config: FastDeploy configuration
|
|
test_name (str): Test name for error reporting
|
|
compare_with_baseline (bool): Whether to compare with baseline result
|
|
"""
|
|
test_model = Attention(fd_config=fd_config, **self.model_config)
|
|
|
|
# Run model test
|
|
output = test_model(ids_remove_padding=self.input_tensor, forward_meta=self.forward_meta)
|
|
|
|
# Validate results if comparison is requested
|
|
if compare_with_baseline:
|
|
np.testing.assert_allclose(
|
|
self.baseline_result, output.numpy(), err_msg=f"Test {test_name} failed: output mismatch"
|
|
)
|
|
|
|
def test_dynamic_graph(self):
|
|
"""Test dynamic graph mode"""
|
|
fd_config = self._setup_test_config(graph_opt_level=0, use_cudagraph=False)
|
|
self._run_model_test(fd_config, "dynamic_graph", compare_with_baseline=False)
|
|
|
|
def test_static_graph(self):
|
|
"""Test static graph mode"""
|
|
fd_config = self._setup_test_config(graph_opt_level=1, use_cudagraph=False)
|
|
self._run_model_test(fd_config, "static_graph")
|
|
|
|
def test_cinn_graph(self):
|
|
"""Test CINN optimization mode"""
|
|
# Note: CINN is not opened yet
|
|
fd_config = self._setup_test_config(graph_opt_level=2, use_cudagraph=False)
|
|
self._run_model_test(fd_config, "cinn_graph")
|
|
|
|
def test_dynamic_graph_with_cudagraph(self):
|
|
"""Test dynamic graph + CudaGraph mode"""
|
|
fd_config = self._setup_test_config(graph_opt_level=0, use_cudagraph=True)
|
|
self._run_model_test(fd_config, "dynamic_graph_cudagraph")
|
|
|
|
def test_static_graph_with_cudagraph(self):
|
|
"""Test static graph + CudaGraph mode"""
|
|
fd_config = self._setup_test_config(graph_opt_level=1, use_cudagraph=True)
|
|
self._run_model_test(fd_config, "static_graph_cudagraph")
|
|
|
|
def test_cinn_graph_with_cudagraph(self):
|
|
"""Test CINN + CudaGraph mode"""
|
|
# Note: CINN is not opened yet
|
|
fd_config = self._setup_test_config(graph_opt_level=2, use_cudagraph=True)
|
|
self._run_model_test(fd_config, "cinn_graph_cudagraph")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|