Files
FastDeploy/tests/graph_optimization/test_cuda_graph_recapture.py
YuanRisheng 2e9e53ff7e [FDConfig]Remove max_num_batched_tokens/max_num_seqs in parallel config (#4116)
* remove max_num_batched_tokens in parallel config

* remove max_num_seqs

* update test case

* fix test

* fix

---------

Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
2025-09-17 10:43:35 +08:00

154 lines
5.3 KiB
Python

import unittest
import paddle
from fastdeploy.config import (
CacheConfig,
FDConfig,
GraphOptimizationConfig,
ParallelConfig,
SchedulerConfig,
)
from fastdeploy.model_executor.forward_meta import ForwardMeta
from fastdeploy.model_executor.graph_optimization.decorator import (
support_graph_optimization,
)
from fastdeploy.utils import print_gpu_memory_use
@support_graph_optimization
class TestCase1SubLayer1(paddle.nn.Layer):
"""Sub layer 1 of test case 1"""
def __init__(self, fd_config: FDConfig, **kwargs):
super().__init__()
def forward(self, ids_remove_padding, forward_meta: ForwardMeta):
"""Sub layer1 forward pass"""
output = paddle.add(forward_meta.input_ids, forward_meta.input_ids)
return output
def forward_correct(self, ids_remove_padding, forward_meta: ForwardMeta):
"""Sub layer1 Correct forward pass"""
output = paddle.add(forward_meta.input_ids, forward_meta.input_ids)
return output
class TestModel1(paddle.nn.Layer):
"""Test Model"""
def __init__(self, fd_config: FDConfig, **kwargs):
super().__init__()
self.fd_config = fd_config
self.sublayer1 = TestCase1SubLayer1(self.fd_config)
sublayer1_copy = TestCase1SubLayer1(self.fd_config)
self.sublayer2 = sublayer1_copy
def forward(self, ids_remove_padding, forward_meta: ForwardMeta):
"""Test model forward pass"""
# sublayer1 use cuda graph
sub_meta1 = forward_meta
sublayer1_output = self.sublayer1(ids_remove_padding=ids_remove_padding, forward_meta=sub_meta1)
# sublayer2 use cuda graph
sub_meta2 = ForwardMeta(
input_ids=sublayer1_output, ids_remove_padding=sublayer1_output, step_use_cudagraph=True
)
sublayer2_output = self.sublayer2(ids_remove_padding=sublayer1_output, forward_meta=sub_meta2)
return sublayer2_output
def forward_correct(self, ids_remove_padding, forward_meta: ForwardMeta):
"""Test model Correct forward pass"""
# sublayer1 not use cuda graph
sub_meta1 = forward_meta
sublayer1_output = self.sublayer1.forward_correct(
ids_remove_padding=ids_remove_padding, forward_meta=sub_meta1
)
# sublayer2 not use cuda graph
sub_meta2 = ForwardMeta(input_ids=sublayer1_output, ids_remove_padding=sublayer1_output)
sublayer2_output = self.sublayer2.forward_correct(ids_remove_padding=sublayer1_output, forward_meta=sub_meta2)
return sublayer2_output
def clear_grpah_opt_backend(self):
""" """
self.sublayer1.clear_grpah_opt_backend(fd_config=self.fd_config)
self.sublayer2.clear_grpah_opt_backend(fd_config=self.fd_config)
class TestCUDAGrpahRecapture(unittest.TestCase):
"""
Test CUDAGraph Memory change
"""
def test_cuda_graph_recapture(self):
"""Run test case"""
# Set FastDeploy config
graph_opt_config = GraphOptimizationConfig(args={})
graph_opt_config.use_cudagraph = True
scheduler_config = SchedulerConfig(args={})
cache_config = CacheConfig(args={})
scheduler_config.max_num_seqs = 1
parallel_config = ParallelConfig(args={})
fd_config = FDConfig(
graph_opt_config=graph_opt_config,
scheduler_config=scheduler_config,
cache_config=cache_config,
parallel_config=parallel_config,
)
# Run Test Case1
self.test_model1 = TestModel1(fd_config=fd_config)
input_tensor1 = paddle.ones([1, 32768])
forward_meta1 = ForwardMeta(input_ids=input_tensor1, ids_remove_padding=input_tensor1, step_use_cudagraph=True)
# Correct output
self.output_correct = self.test_model1.forward_correct(
ids_remove_padding=input_tensor1, forward_meta=forward_meta1
)
# Capture and Destroy
self.capture_and_replay(input_tensor1, forward_meta1)
self.recapture_and_replay(input_tensor1, forward_meta1)
def capture_and_replay(self, input_tensor1, forward_meta1):
""" """
# Trigger Capture
print_gpu_memory_use(0, "before capture")
output1 = self.test_model1(ids_remove_padding=input_tensor1, forward_meta=forward_meta1)
print_gpu_memory_use(0, "after capture")
# Replay
output1 = self.test_model1(ids_remove_padding=input_tensor1, forward_meta=forward_meta1)
assert (output1 == self.output_correct).all()
# Destroy
print_gpu_memory_use(0, "before destroy")
self.test_model1.clear_grpah_opt_backend()
print_gpu_memory_use(0, "after destroy")
def recapture_and_replay(self, input_tensor1, forward_meta1):
""" """
# Trigger Capture
print_gpu_memory_use(0, "before recapture")
output2 = self.test_model1(ids_remove_padding=input_tensor1, forward_meta=forward_meta1)
print_gpu_memory_use(0, "after recapture")
# Replay
output2 = self.test_model1(ids_remove_padding=input_tensor1, forward_meta=forward_meta1)
assert (output2 == self.output_correct).all()
# Destroy
print_gpu_memory_use(0, "before destroy")
self.test_model1.clear_grpah_opt_backend()
print_gpu_memory_use(0, "after destroy")
if __name__ == "__main__":
unittest.main()