Files
FastDeploy/fastdeploy/worker/model_runner_base.py
YuanRisheng 2e9e53ff7e [FDConfig]Remove max_num_batched_tokens/max_num_seqs in parallel config (#4116)
* remove max_num_batched_tokens in parallel config

* remove max_num_seqs

* update test case

* fix test

* fix

---------

Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
2025-09-17 10:43:35 +08:00

82 lines
2.5 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from abc import ABC, abstractmethod
from paddle import nn
from fastdeploy.config import FDConfig
from fastdeploy.utils import get_logger
from fastdeploy.worker.output import ModelRunnerOutput
logger = get_logger("model_runner_base", "model_runner_base.log")
class ModelRunnerBase(ABC):
"""
Engine -> (WIP)Executor -> Worker -> ModelRunner -> Model
ModelRunner interface abstracts the model execution logic that
contain input preparation, token generation, and tokenprocessing.
"""
def __init__(self, fd_config: FDConfig, device: str) -> None:
"""
Initialize FDConfig
"""
self.fd_config = fd_config
self.model_config = fd_config.model_config
self.load_config = fd_config.load_config
self.device_config = fd_config.device_config
self.speculative_config = fd_config.speculative_config
self.parallel_config = fd_config.parallel_config
self.graph_opt_config = fd_config.graph_opt_config
self.quant_config = fd_config.quant_config
self.cache_config = fd_config.cache_config
self.scheduler_config = fd_config.scheduler_config
# ... config
self.device = device
@abstractmethod
def load_model(self) -> None:
"""
Load model from local path or remote(will download) path
"""
raise NotImplementedError
@abstractmethod
def get_model(self) -> nn.Layer:
"""
Get current model
"""
raise NotImplementedError
@abstractmethod
def execute_model(
self,
) -> ModelRunnerOutput:
"""
Execute model with and get output
"""
raise NotImplementedError
@abstractmethod
def profile_run(self) -> None:
"""
Execute a forward pass with dummy inputs to profile the memory usage of the model."
"""
raise NotImplementedError