mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-29 22:02:30 +08:00

* remove max_num_batched_tokens in parallel config * remove max_num_seqs * update test case * fix test * fix --------- Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
82 lines
2.5 KiB
Python
82 lines
2.5 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
from abc import ABC, abstractmethod
|
|
|
|
from paddle import nn
|
|
|
|
from fastdeploy.config import FDConfig
|
|
from fastdeploy.utils import get_logger
|
|
from fastdeploy.worker.output import ModelRunnerOutput
|
|
|
|
logger = get_logger("model_runner_base", "model_runner_base.log")
|
|
|
|
|
|
class ModelRunnerBase(ABC):
|
|
"""
|
|
Engine -> (WIP)Executor -> Worker -> ModelRunner -> Model
|
|
ModelRunner interface abstracts the model execution logic that
|
|
contain input preparation, token generation, and tokenprocessing.
|
|
"""
|
|
|
|
def __init__(self, fd_config: FDConfig, device: str) -> None:
|
|
"""
|
|
Initialize FDConfig
|
|
"""
|
|
self.fd_config = fd_config
|
|
self.model_config = fd_config.model_config
|
|
self.load_config = fd_config.load_config
|
|
self.device_config = fd_config.device_config
|
|
self.speculative_config = fd_config.speculative_config
|
|
self.parallel_config = fd_config.parallel_config
|
|
self.graph_opt_config = fd_config.graph_opt_config
|
|
self.quant_config = fd_config.quant_config
|
|
self.cache_config = fd_config.cache_config
|
|
self.scheduler_config = fd_config.scheduler_config
|
|
# ... config
|
|
|
|
self.device = device
|
|
|
|
@abstractmethod
|
|
def load_model(self) -> None:
|
|
"""
|
|
Load model from local path or remote(will download) path
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def get_model(self) -> nn.Layer:
|
|
"""
|
|
Get current model
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def execute_model(
|
|
self,
|
|
) -> ModelRunnerOutput:
|
|
"""
|
|
Execute model with and get output
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def profile_run(self) -> None:
|
|
"""
|
|
Execute a forward pass with dummy inputs to profile the memory usage of the model."
|
|
"""
|
|
raise NotImplementedError
|