mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-27 04:46:16 +08:00

* remove max_num_batched_tokens in parallel config * remove max_num_seqs * update test case * fix test * fix --------- Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
238 lines
9.6 KiB
Python
238 lines
9.6 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
from typing import TYPE_CHECKING, Dict, Optional
|
|
|
|
import numpy as np
|
|
import paddle
|
|
from paddle import nn
|
|
from paddleformers.utils.log import logger
|
|
|
|
from fastdeploy.config import FDConfig
|
|
from fastdeploy.model_executor.layers.quantization.quant_base import QuantMethodBase
|
|
|
|
if TYPE_CHECKING:
|
|
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
|
|
|
import os
|
|
|
|
from safetensors import safe_open
|
|
|
|
from fastdeploy.model_executor.layers.utils import get_tensor
|
|
from fastdeploy.model_executor.utils import default_weight_loader
|
|
|
|
|
|
class Attention(nn.Layer):
|
|
"""
|
|
The AttentionLayer.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
fd_config: FDConfig,
|
|
layer_id: int,
|
|
v_head_dim: int = -1,
|
|
rope_type: str = "",
|
|
qkv_bias: Optional[paddle.Tensor] = None,
|
|
qkv_scale: Optional[paddle.Tensor] = None,
|
|
prefix: str = "",
|
|
out_scale: float = -1.0,
|
|
linear_shift: paddle.Tensor = None,
|
|
linear_smooth: paddle.Tensor = None,
|
|
use_neox_rotary_style: bool = False,
|
|
use_qk_norm: bool = False,
|
|
rms_norm_eps: float = 1e-6,
|
|
) -> None:
|
|
"""
|
|
Initializes `LMLayer` with the given parameters.
|
|
|
|
Args:
|
|
fd_config (dict): The config of LM model.
|
|
layer_id (int): The id of current layer.
|
|
v_head_dim (int, optional): The head dim of value. Defaults to -1.
|
|
rope_type (str, optional): The type of RoPE. Defaults to "".
|
|
qkv_bias (Optional[paddle.Tensor], optional): The bias of QKV. Defaults to None.
|
|
qkv_scale (Optional[paddle.Tensor], optional): The scale of QKV. Defaults to None.
|
|
prefix (str, optional): The name of current layer. Defaults to "".
|
|
linear_shift (Optional[paddle.Tensor], optional): The shift of linear. Defaults to None.
|
|
linear_smooth (Optional[paddle.Tensor], optional): The smooth of linear. Defaults to None.
|
|
use_qk_norm (bool, optional): Whether to apply rmsnorm on QA after rope. Defaults to False.
|
|
rms_norm_eps (float, optional): The epsilon of RMSNorm. Defaults to 1e-6.
|
|
|
|
Raises:
|
|
ValueError: If the `v_head_dim` is less than 0.
|
|
"""
|
|
super().__init__()
|
|
self.fd_config = fd_config
|
|
self.num_heads: int = (
|
|
fd_config.model_config.num_attention_heads // fd_config.parallel_config.tensor_parallel_size
|
|
)
|
|
self.head_dim: int = fd_config.model_config.head_dim
|
|
self.kv_num_heads: int = max(
|
|
1,
|
|
fd_config.model_config.num_key_value_heads // fd_config.parallel_config.tensor_parallel_size,
|
|
)
|
|
self.layer_id: int = layer_id
|
|
self.v_head_dim: int = v_head_dim if v_head_dim > 0 else self.head_dim
|
|
self.rope_type: str = rope_type
|
|
self.qk_head_dim: int = self.head_dim
|
|
self.prefix: str = prefix
|
|
# not use
|
|
self.linear_shift: paddle.Tensor | None = linear_shift
|
|
self.linear_smooth: paddle.Tensor | None = linear_smooth
|
|
self.qkv_bias: paddle.Tensor | None = qkv_bias
|
|
self.qkv_scale: paddle.Tensor | None = qkv_scale
|
|
self._dtype = self._helper.get_default_dtype()
|
|
|
|
self.out_scale: float = out_scale
|
|
self.use_neox_rotary_style: bool = use_neox_rotary_style
|
|
|
|
if fd_config.quant_config and hasattr(fd_config.quant_config, "kv_cache_quant_type"):
|
|
self.quant_method: QuantMethodBase = fd_config.quant_config.get_quant_method(self)
|
|
else:
|
|
self.quant_method = None
|
|
|
|
if self.quant_method is None:
|
|
logger.info(f"Attention is running in cache kv {self._dtype} mode")
|
|
else:
|
|
logger.info(f"Attention is running in cache kv {self.quant_method.cache_quant_config.quant_type} mode")
|
|
self.use_qk_norm = use_qk_norm
|
|
self.rms_norm_eps = rms_norm_eps
|
|
if self.use_qk_norm:
|
|
self.q_norm_key = f"{self.prefix}.q_norm"
|
|
self.k_norm_key = f"{self.prefix}.k_norm"
|
|
|
|
self.init_weight()
|
|
if (
|
|
fd_config.moba_attention_config is not None
|
|
and fd_config.moba_attention_config.moba_encoder_top_k_left is not None
|
|
and fd_config.moba_attention_config.moba_encoder_top_k_right is not None
|
|
and fd_config.moba_attention_config.moba_decoder_top_k_left is not None
|
|
and fd_config.moba_attention_config.moba_decoder_top_k_right is not None
|
|
):
|
|
mlp_weight_path = os.path.join(
|
|
fd_config.model_config.model, fd_config.moba_attention_config.mlp_weight_name
|
|
)
|
|
self.moba_use_mlp = mlp_weight_path is not None and os.path.exists(mlp_weight_path)
|
|
moba_block_size = fd_config.moba_attention_config.moba_block_size
|
|
moba_max_seq_length = fd_config.moba_attention_config.moba_max_seq_length
|
|
if self.moba_use_mlp:
|
|
mlp_weight = {}
|
|
with safe_open(mlp_weight_path, framework="np", device="cpu") as f:
|
|
for key_name in f.keys():
|
|
weight = f.get_tensor(key_name)
|
|
weight = paddle.Tensor(weight, zero_copy=True)
|
|
weight = weight._copy_to(paddle.framework._current_expected_place(), False)
|
|
mlp_weight[key_name] = weight
|
|
|
|
if self.layer_id < fd_config.model_config.num_hidden_layers - 1:
|
|
self.attn_gate_weight = mlp_weight[
|
|
f"ernie.layers.{self.layer_id}.self_attn.attn_gate.weight"
|
|
].astype(paddle.get_default_dtype())[
|
|
fd_config.parallel_config.tensor_parallel_rank
|
|
* self.kv_num_heads : (fd_config.parallel_config.tensor_parallel_rank + 1)
|
|
* self.kv_num_heads
|
|
]
|
|
assert self.attn_gate_weight.shape[1] % moba_block_size == 0
|
|
|
|
self.cache_k_block_means = paddle.zeros(
|
|
[
|
|
fd_config.scheduler_config.max_num_seqs,
|
|
moba_max_seq_length // moba_block_size,
|
|
self.kv_num_heads,
|
|
self.head_dim,
|
|
],
|
|
dtype=paddle.get_default_dtype(),
|
|
)
|
|
|
|
def init_weight(self):
|
|
if self.quant_method is not None:
|
|
self.quant_method.create_weights(
|
|
self,
|
|
weight_loader=(
|
|
self.weight_loader if hasattr(self, "weight_loader") else default_weight_loader(self.fd_config)
|
|
),
|
|
)
|
|
|
|
if self.use_qk_norm:
|
|
self.q_norm_weight = self.create_parameter(
|
|
shape=[self.qk_head_dim],
|
|
dtype="float32",
|
|
is_bias=False,
|
|
default_initializer=paddle.nn.initializer.Constant(0),
|
|
)
|
|
|
|
self.k_norm_weight = self.create_parameter(
|
|
shape=[self.qk_head_dim],
|
|
dtype="float32",
|
|
is_bias=False,
|
|
default_initializer=paddle.nn.initializer.Constant(0),
|
|
)
|
|
|
|
def load_state_dict(self, state_dict: Dict[str, paddle.Tensor | np.ndarray]):
|
|
"""
|
|
Attention only have quant related scales not other parameters.
|
|
"""
|
|
if self.quant_method is not None:
|
|
self.quant_method.process_loaded_weights(self, state_dict)
|
|
if self.use_qk_norm:
|
|
q_norm_weight_tensor = paddle.to_tensor(get_tensor(state_dict.pop(self.q_norm_key + ".weight")))
|
|
k_norm_weight_tensor = paddle.to_tensor(get_tensor(state_dict.pop(self.k_norm_key + ".weight")))
|
|
self.q_norm_weight.set_value(q_norm_weight_tensor.astype("float32"))
|
|
self.k_norm_weight.set_value(k_norm_weight_tensor.astype("float32"))
|
|
|
|
def weight_loader(self, param, loaded_weight, loaded_shard_id: Optional[str] = None):
|
|
loaded_weight = get_tensor(loaded_weight).cast(paddle.get_default_dtype())
|
|
if self.quant_method.cache_quant_config.has_zero_point: # cache_int4_zp
|
|
loaded_weight = 1.0 / loaded_weight
|
|
else:
|
|
loaded_weight = self.quant_method.cache_quant_config.max_bound / loaded_weight
|
|
|
|
param.copy_(loaded_weight, False)
|
|
|
|
def forward(
|
|
self,
|
|
q: paddle.Tensor = None,
|
|
k: paddle.Tensor = None,
|
|
v: paddle.Tensor = None,
|
|
qkv: paddle.Tensor = None,
|
|
compressed_kv: paddle.Tensor = None,
|
|
k_pe: paddle.Tensor = None,
|
|
forward_meta: ForwardMeta = None,
|
|
) -> paddle.Tensor:
|
|
"""
|
|
The forward function of attention layer.
|
|
args:
|
|
q: the query tensor
|
|
k: the key tensor
|
|
v: the value tensor
|
|
forward_meta: the forward meta data
|
|
compressed_kv: optional compressed key-value cache (for MLA)
|
|
k_pe: optional key positional encoding (for MLA)
|
|
"""
|
|
return forward_meta.attn_backend.forward(
|
|
q,
|
|
k,
|
|
v,
|
|
qkv,
|
|
compressed_kv,
|
|
k_pe,
|
|
self,
|
|
forward_meta,
|
|
)
|