Files
FastDeploy/fastdeploy/model_executor/guided_decoding/xgrammar_backend.py
YuanRisheng 2e9e53ff7e [FDConfig]Remove max_num_batched_tokens/max_num_seqs in parallel config (#4116)
* remove max_num_batched_tokens in parallel config

* remove max_num_seqs

* update test case

* fix test

* fix

---------

Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
2025-09-17 10:43:35 +08:00

470 lines
17 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import json
import re
import traceback
from typing import Any, List, Optional
import paddle
import torch
from fastdeploy.config import FDConfig
from fastdeploy.engine.request import Request
from fastdeploy.model_executor.guided_decoding import (
BackendBase,
BaseChecker,
LogitsProcessorBase,
)
from fastdeploy.utils import llm_logger
try:
from xgrammar import (
CompiledGrammar,
Grammar,
GrammarCompiler,
GrammarMatcher,
StructuralTagItem,
TokenizerInfo,
allocate_token_bitmask,
apply_token_bitmask_inplace,
)
except Exception as e:
raise Exception(f"import XGrammar failed, please check your environment:\n\t {e}")
class XGrammarProcessor(LogitsProcessorBase):
"""
XGrammar-specific implementation of LogitsProcessorBase.
This processor enforces grammar constraints during token generation using XGrammar.
It manages the grammar matching state and applies token masks to logits.
Attributes:
max_rollback_tokens (int): Maximum number of tokens to rollback on mismatch
vocab_size (int): Size of the vocabulary
batch_size (int): Batch size for processing
compiled_grammar (CompiledGrammar): Compiled grammar rules
terminate_without_stop_token (bool): Whether to terminate without stop token
override_stop_tokens (Optional[List[int]]): Custom stop tokens
matcher (GrammarMatcher): Grammar matching engine
"""
def __init__(
self,
compiled_grammar: CompiledGrammar,
terminate_without_stop_token: bool = False,
override_stop_tokens: Optional[List[int]] = None,
vocab_size: Optional[int] = None,
batch_size: Optional[int] = None,
enable_thinking: bool = False,
):
super().__init__(enable_reasoning=enable_thinking)
self.max_rollback_tokens = 200
self.vocab_size = vocab_size
self.batch_size = batch_size
self.compiled_grammar = compiled_grammar
self.terminate_without_stop_token = terminate_without_stop_token
self.override_stop_tokens = override_stop_tokens
self.matcher = GrammarMatcher(
compiled_grammar=compiled_grammar,
max_rollback_tokens=self.max_rollback_tokens,
terminate_without_stop_token=terminate_without_stop_token,
override_stop_tokens=override_stop_tokens,
)
def allocate_token_bitmask(self) -> torch.Tensor:
"""
Allocate a token bitmask tensor for grammar constraints.
Returns:
torch.Tensor: A tensor of shape (batch_size, vocab_size) initialized to 0
"""
return allocate_token_bitmask(self.batch_size, self.vocab_size)
def fill_token_bitmask(self, token_bitmask: torch.Tensor, idx: int) -> None:
"""
Fill the token bitmask with allowed tokens for the given index.
Args:
token_bitmask (torch.Tensor): The token bitmask tensor to fill
idx (int): The batch index to fill the mask for
Returns:
None: Modifies the token_bitmask in-place
"""
self.matcher.fill_next_token_bitmask(token_bitmask, idx)
def apply_token_mask(
self,
logits: paddle.Tensor,
token_bitmask: torch.Tensor,
indices: Optional[List[int]] = None,
) -> paddle.Tensor:
"""
Apply the token mask to the logits, modifying probabilities of invalid tokens.
Args:
logits (paddle.Tensor): The logits tensor to modify
token_bitmask (torch.Tensor): The token bitmask indicating allowed tokens
indices (Optional[List[int]]): Optional list of batch indices to apply mask to
Returns:
paddle.Tensor: The modified logits tensor
"""
origin_place = logits.place
origin_dtype = logits.dtype
logits = torch.from_numpy(logits.numpy())
logits = logits.float() # cpu
apply_token_bitmask_inplace(
logits=logits,
bitmask=token_bitmask.to(logits.device, non_blocking=True),
indices=indices,
)
return paddle.to_tensor(
logits.numpy(),
dtype=origin_dtype,
place=origin_place,
)
def reset(self) -> None:
"""
Reset the grammar matcher state to initial conditions.
Returns:
None: No return value
"""
self.matcher.reset()
def accept_token(self, token: int) -> None:
"""
Validate and accept a generated token against the grammar constraints.
Args:
token (int): The token ID to validate
Raises:
AssertionError: If token is not allowed by the grammar
"""
assert self.matcher.accept_token(token), f"Failed to accept token {token}"
def is_terminated(self) -> bool:
"""
Check if the grammar matching process has terminated.
Returns:
bool: True if matching has terminated, False otherwise
"""
return self.matcher.is_terminated()
def copy(self) -> "XGrammarProcessor":
"""
Create a deep copy of this processor instance.
Returns:
XGrammarProcessor: A new processor instance with identical state
"""
return XGrammarProcessor(
compiled_grammar=self.compiled_grammar,
terminate_without_stop_token=self.terminate_without_stop_token,
override_stop_tokens=self.override_stop_tokens,
vocab_size=self.vocab_size,
batch_size=self.batch_size,
)
class XGrammarBackend(BackendBase):
"""
XGrammar-specific implementation of BackendBase.
This backend handles compilation of various schema types (JSON, regex, grammar)
into XGrammar processors. It manages the grammar compiler and tokenizer info.
Attributes:
vocab_size (int): Size of the vocabulary from config
batch_size (int): Maximum batch size from config
any_whitespace (bool): Whether to allow any whitespace in JSON
grammar_compiler (GrammarCompiler): Grammar compilation engine
"""
def __init__(
self,
fd_config: FDConfig,
**kwargs,
):
super().__init__(fd_config=fd_config)
self.vocab_size = fd_config.model_config.vocab_size
self.batch_size = fd_config.scheduler_config.max_num_seqs
self.any_whitespace = not fd_config.parallel_config.disable_any_whitespace
try:
tokenizer_info = TokenizerInfo.from_huggingface(self.hf_tokenizer, vocab_size=self.vocab_size)
self.grammar_compiler = GrammarCompiler(tokenizer_info=tokenizer_info)
except Exception as e:
raise Exception(f"Failed to load XGrammar tokenizer: {e}")
def _create_processor(
self,
compiled_grammar: CompiledGrammar,
terminate_without_stop_token: bool = False,
override_stop_tokens: Optional[List[int]] = None,
enable_thinking: bool = False,
) -> XGrammarProcessor:
"""
Create a logits processor instance for the given compiled grammar.
Args:
compiled_grammar (CompiledGrammar): Compiled grammar rules
terminate_without_stop_token (bool): Whether to terminate without stop token
override_stop_tokens (Optional[List[int]]): Custom stop tokens to override defaults
enable_thinking (bool): Whether to enable thinking mode
Returns:
XGrammarProcessor: Configured grammar processor instance
"""
return XGrammarProcessor(
compiled_grammar=compiled_grammar,
terminate_without_stop_token=terminate_without_stop_token,
override_stop_tokens=override_stop_tokens,
vocab_size=self.vocab_size,
batch_size=self.batch_size,
enable_thinking=enable_thinking,
)
def _json_processor(self, schemata: str, enable_thinking: bool = False) -> Optional[XGrammarProcessor]:
"""
Compile JSON schema into a grammar processor.
Args:
schemata (str): JSON schema string to compile
enable_thinking (bool): Whether to enable thinking mode
Returns:
Optional[XGrammarProcessor]: Configured processor if successful, None on failure
"""
try:
compiled_grammar = self.grammar_compiler.compile_json_schema(schemata, any_whitespace=self.any_whitespace)
except Exception as e:
llm_logger.error(f"Failed to compile json schema: {e}, {str(traceback.format_exc())}")
return None
return self._create_processor(compiled_grammar, enable_thinking=enable_thinking)
def _regex_processor(self, schemata: str, enable_thinking: bool = False) -> Optional[XGrammarProcessor]:
"""
Compile regex pattern into a grammar processor.
Args:
schemata (str): Regex pattern string to compile
enable_thinking (bool): Whether to enable thinking mode
Returns:
Optional[XGrammarProcessor]: Configured processor if successful, None on failure
"""
try:
compiled_grammar = self.grammar_compiler.compile_regex(schemata)
except Exception as e:
llm_logger.error(f"Failed to compile regex schema: {e}, {str(traceback.format_exc())}")
return None
return self._create_processor(compiled_grammar, enable_thinking=enable_thinking)
def _grammar_processor(self, schemata: str, enable_thinking: bool = False) -> Optional[XGrammarProcessor]:
"""
Compile grammar (EBNF) into a grammar processor.
Args:
schemata (str): Grammar string in EBNF format
enable_thinking (bool): Whether to enable thinking mode
Returns:
Optional[XGrammarProcessor]: Configured processor if successful, None on failure
"""
try:
compiled_grammar = self.grammar_compiler.compile_grammar(schemata)
except Exception as e:
llm_logger.error(f"Failed to compile ebnf schema: {e}, {str(traceback.format_exc())}")
return None
return self._create_processor(compiled_grammar, enable_thinking=enable_thinking)
def _structural_tag_processor(self, schemata: str, enable_thinking: bool = False) -> Optional[XGrammarProcessor]:
"""
Compile structural tags into a grammar processor.
Args:
schemata (str): JSON string containing structural tag definitions
Returns:
Optional[XGrammarProcessor]: Configured processor if successful, None on failure
"""
try:
structural_tag = json.loads(schemata)
tags = [
StructuralTagItem(
begin=structure["begin"],
schema=json.dumps(structure["schema"]),
end=structure["end"],
)
for structure in structural_tag["structures"]
]
compiled_grammar = self.grammar_compiler.compile_structural_tag(tags, structural_tag["triggers"])
except Exception as e:
llm_logger.error(f"Failed to compile structural tags schema: {e}, {str(traceback.format_exc())}")
return None
return self._create_processor(compiled_grammar, enable_thinking=enable_thinking)
class XGrammarChecker(BaseChecker):
"""
XGrammar-specific implementation of BaseChecker.
This validator checks and formats various schema types (JSON, regex, grammar)
for compatibility with XGrammar before processing.
Attributes:
any_whitespace (bool): Whether to allow any whitespace in JSON
"""
def __init__(self, **kwargs):
super().__init__()
self.any_whitespace = not kwargs.get("disable_any_whitespace", True)
def _unsupported_json_schema(self, schema: dict[str, Any]) -> bool:
"""
Check if JSON schema contains unsupported features.
Args:
schema (dict[str, Any]): JSON schema to validate
Returns:
bool: True if schema contains unsupported features, False otherwise
"""
def check_object(obj: dict[str, Any]) -> bool:
if not isinstance(obj, dict):
return False
if obj.get("type") in ("integer", "number") and ("multipleOf" in obj):
return True
if obj.get("type") == "array" and any(
key in obj
for key in (
"uniqueItems",
"contains",
"minContains",
"maxContains",
)
):
return True
if obj.get("type") == "string" and "format" in obj:
return True
if obj.get("type") == "object" and any(
key in obj
for key in (
"minProperties",
"maxProperties",
"propertyNames",
"patternProperties",
)
):
return True
for value in obj.values():
if isinstance(value, dict):
if check_object(value):
return True
elif isinstance(value, list):
for item in value:
if isinstance(item, dict) and check_object(item):
return True
return False
return check_object(schema)
def schema_format(self, request: Request):
"""
format schema to backend specific format.
"""
if request.guided_json:
try:
if not isinstance(request.guided_json, str):
guided_json = json.dumps(request.guided_json)
else:
guided_json = request.guided_json
Grammar.from_json_schema(guided_json, any_whitespace=self.any_whitespace)
except RuntimeError as e:
err_msg = f"Invalid JSON format: {guided_json}, error message: {e!s}"
return request, err_msg
if self._unsupported_json_schema(guided_json):
err_msg = f"unsupported JSON schema: {guided_json}"
return request, err_msg
request.guided_json = guided_json
return request, None
elif request.guided_grammar:
# TODO: XGrammar only supports GBNF grammars, convert Lark to GBNF
guided_grammar = request.guided_grammar
try:
Grammar.from_ebnf(guided_grammar)
except RuntimeError as e:
err_msg = f"Invalid grammar format: {guided_grammar}, error message: {e!s}"
return request, err_msg
request.guided_grammar = guided_grammar
return request, None
elif request.guided_json_object:
request.guided_json = '{"type": "object"}'
return request, None
elif request.guided_choice:
try:
escaped_choices = (re.sub(r'(["\\])', r"\\\1", c) for c in request.guided_choice)
guided_choice = "root ::= " + " | ".join(f'"{c}"' for c in escaped_choices)
Grammar.from_ebnf(guided_choice)
except RuntimeError as e:
err_msg = f"Invalid choice format: {guided_choice}, error message: {e!s}"
return request, err_msg
request.guided_grammar = guided_choice
return request, None
elif request.structural_tag:
try:
structural_tag = json.loads(request.structural_tag)
tags = [
StructuralTagItem(
begin=s["begin"],
schema=json.dumps(s["schema"]),
end=s["end"],
)
for s in structural_tag["structures"]
]
Grammar.from_structural_tag(tags, structural_tag["triggers"])
except RuntimeError as e:
err_msg = f"Invalid structural_tag format: {structural_tag}, error message: {e!s}"
return request, err_msg
return request, None
else:
# regex is not format
return request, None