mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	 58d63f3e90
			
		
	
	58d63f3e90
	
	
	
		
			
			* Add Huawei Ascend NPU deploy through PaddleLite CANN * Add NNAdapter interface for paddlelite * Modify Huawei Ascend Cmake * Update way for compiling Huawei Ascend NPU deployment * remove UseLiteBackend in UseCANN * Support compile python whlee * Change names of nnadapter API * Add nnadapter pybind and remove useless API * Support Python deployment on Huawei Ascend NPU * Add models suppor for ascend * Add PPOCR rec reszie for ascend * fix conflict for ascend * Rename CANN to Ascend * Rename CANN to Ascend * Improve ascend * fix ascend bug * improve ascend docs * improve ascend docs * improve ascend docs * Improve Ascend * Improve Ascend * Move ascend python demo * Imporve ascend * Improve ascend * Improve ascend * Improve ascend * Improve ascend * Imporve ascend * Imporve ascend * Improve ascend * acc eval script * acc eval * remove acc_eval from branch huawei * Add detection and segmentation examples for Ascend deployment * Add detection and segmentation examples for Ascend deployment * Add PPOCR example for ascend deploy * Imporve paddle lite compiliation * Add FlyCV doc * Add FlyCV doc * Add FlyCV doc * Imporve Ascend docs * Imporve Ascend docs
		
			
				
	
	
		
			158 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			158 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/vision.h"
 | |
| 
 | |
| #ifdef WIN32
 | |
| const char sep = '\\';
 | |
| #else
 | |
| const char sep = '/';
 | |
| #endif
 | |
| 
 | |
| void CpuInfer(const std::string& model_dir, const std::string& image_file) {
 | |
|   auto model_file = model_dir + sep + "model.pdmodel";
 | |
|   auto params_file = model_dir + sep + "model.pdiparams";
 | |
|   auto config_file = model_dir + sep + "infer_cfg.yml";
 | |
|   auto option = fastdeploy::RuntimeOption();
 | |
|   option.UseCpu();
 | |
|   option.UsePaddleBackend();
 | |
|   auto model = fastdeploy::vision::detection::SSD(model_file, params_file,
 | |
|                                                      config_file, option);
 | |
|   if (!model.Initialized()) {
 | |
|     std::cerr << "Failed to initialize." << std::endl;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   auto im = cv::imread(image_file);
 | |
| 
 | |
|   fastdeploy::vision::DetectionResult res;
 | |
|   if (!model.Predict(im, &res)) {
 | |
|     std::cerr << "Failed to predict." << std::endl;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   std::cout << res.Str() << std::endl;
 | |
|   auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
 | |
|   cv::imwrite("vis_result.jpg", vis_im);
 | |
|   std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
 | |
| }
 | |
| 
 | |
| void KunlunXinInfer(const std::string& model_dir, const std::string& image_file) {
 | |
|   auto model_file = model_dir + sep + "model.pdmodel";
 | |
|   auto params_file = model_dir + sep + "model.pdiparams";
 | |
|   auto config_file = model_dir + sep + "infer_cfg.yml";
 | |
|   auto option = fastdeploy::RuntimeOption();
 | |
|   option.UseKunlunXin();
 | |
|   auto model = fastdeploy::vision::detection::SSD(model_file, params_file,
 | |
|                                                      config_file, option);
 | |
|   if (!model.Initialized()) {
 | |
|     std::cerr << "Failed to initialize." << std::endl;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   auto im = cv::imread(image_file);
 | |
| 
 | |
|   fastdeploy::vision::DetectionResult res;
 | |
|   if (!model.Predict(im, &res)) {
 | |
|     std::cerr << "Failed to predict." << std::endl;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   std::cout << res.Str() << std::endl;
 | |
|   auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
 | |
|   cv::imwrite("vis_result.jpg", vis_im);
 | |
|   std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
 | |
| }
 | |
| 
 | |
| 
 | |
| void GpuInfer(const std::string& model_dir, const std::string& image_file) {
 | |
|   auto model_file = model_dir + sep + "model.pdmodel";
 | |
|   auto params_file = model_dir + sep + "model.pdiparams";
 | |
|   auto config_file = model_dir + sep + "infer_cfg.yml";
 | |
| 
 | |
|   auto option = fastdeploy::RuntimeOption();
 | |
|   option.UseGpu();
 | |
|   auto model = fastdeploy::vision::detection::SSD(model_file, params_file,
 | |
|                                                      config_file, option);
 | |
|   if (!model.Initialized()) {
 | |
|     std::cerr << "Failed to initialize." << std::endl;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   auto im = cv::imread(image_file);
 | |
| 
 | |
|   fastdeploy::vision::DetectionResult res;
 | |
|   if (!model.Predict(im, &res)) {
 | |
|     std::cerr << "Failed to predict." << std::endl;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   std::cout << res.Str() << std::endl;
 | |
|   auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
 | |
|   cv::imwrite("vis_result.jpg", vis_im);
 | |
|   std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
 | |
| }
 | |
| 
 | |
| void AscendInfer(const std::string& model_dir, const std::string& image_file) {
 | |
|   auto model_file = model_dir + sep + "model.pdmodel";
 | |
|   auto params_file = model_dir + sep + "model.pdiparams";
 | |
|   auto config_file = model_dir + sep + "infer_cfg.yml";
 | |
|   auto option = fastdeploy::RuntimeOption();
 | |
|   option.UseAscend();
 | |
|   auto model = fastdeploy::vision::detection::SSD(model_file, params_file,
 | |
|                                                      config_file, option);
 | |
|   if (!model.Initialized()) {
 | |
|     std::cerr << "Failed to initialize." << std::endl;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   auto im = cv::imread(image_file);
 | |
| 
 | |
|   fastdeploy::vision::DetectionResult res;
 | |
|   if (!model.Predict(im, &res)) {
 | |
|     std::cerr << "Failed to predict." << std::endl;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   std::cout << res.Str() << std::endl;
 | |
|   auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
 | |
|   cv::imwrite("vis_result.jpg", vis_im);
 | |
|   std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
 | |
| }
 | |
| 
 | |
| int main(int argc, char* argv[]) {
 | |
|   if (argc < 4) {
 | |
|     std::cout
 | |
|         << "Usage: infer_demo path/to/model_dir path/to/image run_option, "
 | |
|            "e.g ./infer_model ./ssd_dirname ./test.jpeg 0"
 | |
|         << std::endl;
 | |
|     std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
 | |
|                  "with gpu; 2: run with kunlunxin."
 | |
|               << std::endl;
 | |
|     return -1;
 | |
|   }
 | |
| 
 | |
|   if (std::atoi(argv[3]) == 0) {
 | |
|     CpuInfer(argv[1], argv[2]);
 | |
|   } else if (std::atoi(argv[3]) == 1) {
 | |
|     GpuInfer(argv[1], argv[2]);
 | |
|   } else if (std::atoi(argv[3]) == 2) {
 | |
|     KunlunXinInfer(argv[1], argv[2]);
 | |
|   } else if (std::atoi(argv[3]) == 3) {
 | |
|     AscendInfer(argv[1], argv[2]);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 |