Files
FastDeploy/examples/vision/classification/paddleclas
linyangshi 21b1cb8742 [Benchmark] Add more PaddleClas models to benchmark (#1629)
* 添加paddleclas模型

* 更新README_CN

* 更新README_CN

* 更新README

* update get_model.sh

* update get_models.sh

---------

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-03-16 10:45:54 +08:00
..

English | 简体中文

PaddleClas Model Deployment

Model Description

Now FastDeploy supports the deployment of the following models

Prepare PaddleClas Deployment Model

For PaddleClas model export, refer to Model Export.

AttentionThe model exported by PaddleClas contains two files, including inference.pdmodel and inference.pdiparams. However, it is necessary to prepare the generic inference_cls.yaml file provided by PaddleClas to meet the requirements of deployment. FastDeploy will obtain from the yaml file the preprocessing information required during inference. FastDeploy will get the preprocessing information needed by the model from the yaml file. Developers can directly download this file. But they need to modify the configuration parameters in the yaml file based on personalized needs. Refer to the configuration information in the infer section of the PaddleClas model training config.

Download Pre-trained Model

For developers' testing, some models exported by PaddleClas (including the inference_cls.yaml file) are provided below. Developers can download them directly.

Model Parameter File Size Input Shape Top1 Top5
PPLCNet_x1_0 12MB 224x224 71.32% 90.03%
PPLCNetV2_base 26MB 224x224 77.04% 93.27%
EfficientNetB7 255MB 600x600 84.3% 96.9%
EfficientNetB0 19MB 224x224 77.38% 93.31%
EfficientNetB0_small 18MB 224x224 75.8% 92.58%
GhostNet_x1_3 27MB 224x224 75.79% 92.54%
GhostNet_x1_3_ssld 29MB 224x224 79.3% 94.49%
GhostNet_x0_5 10MB 224x224 66.8% 86.9%
MobileNetV1_x0_25 1.9MB 224x224 51.4% 75.5%
MobileNetV1_ssld 17MB 224x224 77.9% 93.9%
MobileNetV2_x0_25 5.9MB 224x224 53.2% 76.5%
MobileNetV2 13MB 224x224 72.15% 90.65%
MobileNetV2_ssld 14MB 224x224 76.74% 93.39%
MobileNetV3_small_x1_0 11MB 224x224 68.24% 88.06%
MobileNetV3_small_x0_35_ssld 6.4MB 224x224 55.55% 77.71%
MobileNetV3_large_x1_0_ssld 22MB 224x224 78.96% 94.48%
ShuffleNetV2_x0_25 2.4MB 224x224 49.9% 73.79%
ShuffleNetV2_x2_0 29MB 224x224 73.15% 91.2%
SqueezeNet1_1 4.8MB 224x224 60.1% 81.9%
InceptionV3 92MB 299x299 79.14% 94.59%
PPHGNet_tiny_ssld 57MB 224x224 81.95% 96.12%
PPHGNet_small 87MB 224x224 81.51% 95.82%
PPHGNet_base_ssld 274MB 224x224 85.0% 97.35%
ResNet50_vd 98MB 224x224 79.12% 94.44%
ResNet50 91MB 224x224 76.5% 93%
ResNeXt50_32x4d 89MB 224x224 77.75% 93.82%
DenseNet121 29MB 224x224 75.66% 92.58%
PULC_person_exists 6MB 224x224
ViT_large_patch16_224 1.1GB 224x224 83.23% 96.50%

Detailed Deployment Documents