mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	 312e1b097d
			
		
	
	312e1b097d
	
	
	
		
			
			* Refactor PaddleSeg with preprocessor && postprocessor * Fix bugs * Delete redundancy code * Modify by comments * Refactor according to comments * Add batch evaluation * Add single test script * Add ppliteseg single test script && fix eval(raise) error * fix bug * Fix evaluation segmentation.py batch predict * Fix segmentation evaluation bug * Fix evaluation segmentation bugs Co-authored-by: Jason <jiangjiajun@baidu.com>
		
			
				
	
	
		
			89 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			89 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/pybind/main.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| void BindYOLOv5(pybind11::module& m) {
 | |
|   pybind11::class_<vision::detection::YOLOv5Preprocessor>(
 | |
|       m, "YOLOv5Preprocessor")
 | |
|       .def(pybind11::init<>())
 | |
|       .def("run", [](vision::detection::YOLOv5Preprocessor& self, std::vector<pybind11::array>& im_list) {
 | |
|         std::vector<vision::FDMat> images;
 | |
|         for (size_t i = 0; i < im_list.size(); ++i) {
 | |
|           images.push_back(vision::WrapMat(PyArrayToCvMat(im_list[i])));
 | |
|         }
 | |
|         std::vector<FDTensor> outputs;
 | |
|         std::vector<std::map<std::string, std::array<float, 2>>> ims_info;
 | |
|         if (!self.Run(&images, &outputs, &ims_info)) {
 | |
|           throw std::runtime_error("Failed to preprocess the input data in PaddleClasPreprocessor.");
 | |
|         }
 | |
|         for (size_t i = 0; i < outputs.size(); ++i) {
 | |
|           outputs[i].StopSharing();
 | |
|         }
 | |
|         return make_pair(outputs, ims_info);
 | |
|       })
 | |
|       .def_property("size", &vision::detection::YOLOv5Preprocessor::GetSize, &vision::detection::YOLOv5Preprocessor::SetSize)
 | |
|       .def_property("padding_value", &vision::detection::YOLOv5Preprocessor::GetPaddingValue, &vision::detection::YOLOv5Preprocessor::SetPaddingValue)
 | |
|       .def_property("is_scale_up", &vision::detection::YOLOv5Preprocessor::GetScaleUp, &vision::detection::YOLOv5Preprocessor::SetScaleUp);
 | |
| 
 | |
|   pybind11::class_<vision::detection::YOLOv5Postprocessor>(
 | |
|       m, "YOLOv5Postprocessor")
 | |
|       .def(pybind11::init<>())
 | |
|       .def("run", [](vision::detection::YOLOv5Postprocessor& self, std::vector<FDTensor>& inputs,
 | |
|                      const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
 | |
|         std::vector<vision::DetectionResult> results;
 | |
|         if (!self.Run(inputs, &results, ims_info)) {
 | |
|           throw std::runtime_error("Failed to postprocess the runtime result in YOLOv5Postprocessor.");
 | |
|         }
 | |
|         return results;
 | |
|       })
 | |
|       .def("run", [](vision::detection::YOLOv5Postprocessor& self, std::vector<pybind11::array>& input_array,
 | |
|                      const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
 | |
|         std::vector<vision::DetectionResult> results;
 | |
|         std::vector<FDTensor> inputs;
 | |
|         PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
 | |
|         if (!self.Run(inputs, &results, ims_info)) {
 | |
|           throw std::runtime_error("Failed to postprocess the runtime result in YOLOv5Postprocessor.");
 | |
|         }
 | |
|         return results;
 | |
|       })
 | |
|       .def_property("conf_threshold", &vision::detection::YOLOv5Postprocessor::GetConfThreshold, &vision::detection::YOLOv5Postprocessor::SetConfThreshold)
 | |
|       .def_property("nms_threshold", &vision::detection::YOLOv5Postprocessor::GetNMSThreshold, &vision::detection::YOLOv5Postprocessor::SetNMSThreshold)
 | |
|       .def_property("multi_label", &vision::detection::YOLOv5Postprocessor::GetMultiLabel, &vision::detection::YOLOv5Postprocessor::SetMultiLabel);
 | |
| 
 | |
|   pybind11::class_<vision::detection::YOLOv5, FastDeployModel>(m, "YOLOv5")
 | |
|       .def(pybind11::init<std::string, std::string, RuntimeOption,
 | |
|                           ModelFormat>())
 | |
|       .def("predict",
 | |
|            [](vision::detection::YOLOv5& self, pybind11::array& data) {
 | |
|              auto mat = PyArrayToCvMat(data);
 | |
|              vision::DetectionResult res;
 | |
|              self.Predict(mat, &res);
 | |
|              return res;
 | |
|            })
 | |
|       .def("batch_predict", [](vision::detection::YOLOv5& self, std::vector<pybind11::array>& data) {
 | |
|         std::vector<cv::Mat> images;
 | |
|         for (size_t i = 0; i < data.size(); ++i) {
 | |
|           images.push_back(PyArrayToCvMat(data[i]));
 | |
|         }
 | |
|         std::vector<vision::DetectionResult> results;
 | |
|         self.BatchPredict(images, &results);
 | |
|         return results;
 | |
|       })
 | |
|       .def_property_readonly("preprocessor", &vision::detection::YOLOv5::GetPreprocessor)
 | |
|       .def_property_readonly("postprocessor", &vision::detection::YOLOv5::GetPostprocessor);
 | |
| }
 | |
| }  // namespace fastdeploy
 |