Files
FastDeploy/examples/vision/facedet/scrfd/rknpu2/python/README.md
Zheng_Bicheng dc13eb7049 [RKNPU2] Update quantitative model (#879)
* 对RKNPU2后端进行修改,当模型为非量化模型时,不在NPU执行normalize操作,当模型为量化模型时,在NUP上执行normalize操作

* 更新RKNPU2框架,输出数据的数据类型统一返回fp32类型

* 更新scrfd,拆分disable_normalize和disable_permute

* 更新scrfd代码,支持量化

* 更新scrfd python example代码

* 更新模型转换代码,支持量化模型

* 更新文档

* 按照要求修改

* 按照要求修改

* 修正模型转换文档

* 更新一下转换脚本
2022-12-19 13:58:43 +08:00

45 lines
1.7 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# SCRFD Python部署示例
在部署前,需确认以下两个步骤
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../../docs/cn/build_and_install/rknpu2.md)
本目录下提供`infer.py`快速完成SCRFD在RKNPU上部署的示例。执行如下脚本即可完成
## 拷贝模型文件
请参考[SCRFD模型转换文档](../README.md)转换SCRFD ONNX模型到RKNN模型,再将RKNN模型移动到该目录下。
## 运行example
拷贝模型文件后请输入以下命令运行RKNPU2 Python example
```bash
# 下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/facedet/scrfd/rknpu2/python
# 下载图片
wget https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_face_detector_3.jpg
# 推理
python3 infer.py --model_file ./scrfd_500m_bnkps_shape640x640_rk3588.rknn \
--image test_lite_face_detector_3.jpg
```
## 可视化
运行完成可视化结果如下图所示
<img width="640" src="https://user-images.githubusercontent.com/67993288/184301789-1981d065-208f-4a6b-857c-9a0f9a63e0b1.jpg">
## 注意事项
RKNPU上对模型的输入要求是使用NHWC格式且图片归一化操作会在转RKNN模型时内嵌到模型中因此我们在使用FastDeploy部署时
需要先调用DisablePermute(C++)或`disable_permute(Python),在预处理阶段禁用归一化以及数据格式的转换。
## 其它文档
- [SCRFD 模型介绍](../README.md)
- [SCRFD C++部署](../cpp/README.md)
- [模型预测结果说明](../../../../../../docs/api/vision_results/README.md)
- [转换SCRFD RKNN模型文档](../README.md)