mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* first draft * update api name * fix bug * fix bug and * fix bug in c api * fix bug in c_api --------- Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
114 lines
5.1 KiB
C++
Executable File
114 lines
5.1 KiB
C++
Executable File
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
#include "fastdeploy/fastdeploy_model.h"
|
|
#include "fastdeploy/vision/common/processors/transform.h"
|
|
#include "fastdeploy/vision/common/result.h"
|
|
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_postprocess_op.h"
|
|
#include "fastdeploy/vision/ocr/ppocr/structurev2_table_postprocessor.h"
|
|
#include "fastdeploy/vision/ocr/ppocr/structurev2_table_preprocessor.h"
|
|
#include "fastdeploy/utils/unique_ptr.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
/** \brief All OCR series model APIs are defined inside this namespace
|
|
*
|
|
*/
|
|
namespace ocr {
|
|
|
|
/*! @brief DBDetector object is used to load the detection model provided by PaddleOCR.
|
|
*/
|
|
class FASTDEPLOY_DECL StructureV2Table : public FastDeployModel {
|
|
public:
|
|
StructureV2Table();
|
|
/** \brief Set path of model file, and the configuration of runtime
|
|
*
|
|
* \param[in] model_file Path of model file, e.g ./en_ppstructure_mobile_v2.0_SLANet_infer/model.pdmodel.
|
|
* \param[in] params_file Path of parameter file, e.g ./en_ppstructure_mobile_v2.0_SLANet_infer/model.pdiparams, if the model format is ONNX, this parameter will be ignored.
|
|
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`.
|
|
* \param[in] model_format Model format of the loaded model, default is Paddle format.
|
|
*/
|
|
StructureV2Table(const std::string& model_file,
|
|
const std::string& params_file = "",
|
|
const std::string& table_char_dict_path = "",
|
|
const RuntimeOption& custom_option = RuntimeOption(),
|
|
const ModelFormat& model_format = ModelFormat::PADDLE);
|
|
|
|
/** \brief Clone a new StructureV2Table Recognizer with less memory usage when multiple instances of the same model are created
|
|
*
|
|
* \return new StructureV2Table* type unique pointer
|
|
*/
|
|
virtual std::unique_ptr<StructureV2Table> Clone() const;
|
|
|
|
/// Get model's name
|
|
std::string ModelName() const { return "ppocr/ocr_table"; }
|
|
|
|
/** \brief Predict the input image and get OCR detection model result.
|
|
*
|
|
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
|
|
* \param[in] boxes_result The output of OCR detection model result will be writen to this structure.
|
|
* \return true if the prediction is successed, otherwise false.
|
|
*/
|
|
virtual bool Predict(const cv::Mat& img,
|
|
std::vector<std::array<int, 8>>* boxes_result,
|
|
std::vector<std::string>* structure_result);
|
|
|
|
/** \brief Predict the input image and get OCR detection model result.
|
|
*
|
|
* \param[in] img The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
|
|
* \param[in] ocr_result The output of OCR detection model result will be writen to this structure.
|
|
* \return true if the prediction is successed, otherwise false.
|
|
*/
|
|
virtual bool Predict(const cv::Mat& img, vision::OCRResult* ocr_result);
|
|
|
|
/** \brief BatchPredict the input image and get OCR detection model result.
|
|
*
|
|
* \param[in] images The list input of image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
|
|
* \param[in] det_results The output of OCR detection model result will be writen to this structure.
|
|
* \return true if the prediction is successed, otherwise false.
|
|
*/
|
|
virtual bool BatchPredict(const std::vector<cv::Mat>& images,
|
|
std::vector<std::vector<std::array<int, 8>>>* det_results,
|
|
std::vector<std::vector<std::string>>* structure_results);
|
|
|
|
/** \brief BatchPredict the input image and get OCR detection model result.
|
|
*
|
|
* \param[in] images The list input of image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
|
|
* \param[in] ocr_results The output of OCR detection model result will be writen to this structure.
|
|
* \return true if the prediction is successed, otherwise false.
|
|
*/
|
|
virtual bool BatchPredict(const std::vector<cv::Mat>& images,
|
|
std::vector<vision::OCRResult>* ocr_results);
|
|
|
|
/// Get preprocessor reference of StructureV2TablePreprocessor
|
|
virtual StructureV2TablePreprocessor& GetPreprocessor() {
|
|
return preprocessor_;
|
|
}
|
|
|
|
/// Get postprocessor reference of StructureV2TablePostprocessor
|
|
virtual StructureV2TablePostprocessor& GetPostprocessor() {
|
|
return postprocessor_;
|
|
}
|
|
|
|
private:
|
|
bool Initialize();
|
|
StructureV2TablePreprocessor preprocessor_;
|
|
StructureV2TablePostprocessor postprocessor_;
|
|
};
|
|
|
|
} // namespace ocr
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|