Files
FastDeploy/fastdeploy/vision/ocr/ppocr/ppstructurev2_table.h
thunder95 2c5fd91a7f [Hackthon_4th 242] Support en_ppstructure_mobile_v2.0_SLANet (#1816)
* first draft

* update api name

* fix bug

* fix bug and

* fix bug in c api

* fix bug in c_api

---------

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-04-27 10:45:14 +08:00

94 lines
3.8 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <vector>
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
#include "fastdeploy/vision/ocr/ppocr/structurev2_table.h"
#include "fastdeploy/vision/ocr/ppocr/dbdetector.h"
#include "fastdeploy/vision/ocr/ppocr/recognizer.h"
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_postprocess_op.h"
#include "fastdeploy/utils/unique_ptr.h"
namespace fastdeploy {
/** \brief This pipeline can launch detection model, classification model and recognition model sequentially. All OCR pipeline APIs are defined inside this namespace.
*
*/
namespace pipeline {
/*! @brief PPStructureV2Table is used to load PP-OCRv2 series models provided by PaddleOCR.
*/
class FASTDEPLOY_DECL PPStructureV2Table : public FastDeployModel {
public:
/** \brief Set up the detection model path, recognition model path and table model path respectively.
*
* \param[in] det_model Path of detection model, e.g ./ch_PP-OCRv2_det_infer
* \param[in] rec_model Path of recognition model, e.g ./ch_PP-OCRv2_rec_infer
* \param[in] table_model Path of table recognition model, e.g ./en_ppstructure_mobile_v2.0_SLANet_infer
*/
PPStructureV2Table(fastdeploy::vision::ocr::DBDetector* det_model,
fastdeploy::vision::ocr::Recognizer* rec_model,
fastdeploy::vision::ocr::StructureV2Table* table_model);
/** \brief Clone a new PPStructureV2Table with less memory usage when multiple instances of the same model are created
*
* \return new PPStructureV2Table* type unique pointer
*/
std::unique_ptr<PPStructureV2Table> Clone() const;
/** \brief Predict the input image and get OCR result.
*
* \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
* \param[in] result The output OCR result will be writen to this structure.
* \return true if the prediction successed, otherwise false.
*/
virtual bool Predict(cv::Mat* img, fastdeploy::vision::OCRResult* result);
virtual bool Predict(const cv::Mat& img,
fastdeploy::vision::OCRResult* result);
/** \brief BatchPredict the input image and get OCR result.
*
* \param[in] images The list of input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format.
* \param[in] batch_result The output list of OCR result will be writen to this structure.
* \return true if the prediction successed, otherwise false.
*/
virtual bool BatchPredict(const std::vector<cv::Mat>& images,
std::vector<fastdeploy::vision::OCRResult>* batch_result);
bool Initialized() const override;
bool SetRecBatchSize(int rec_batch_size);
int GetRecBatchSize();
protected:
fastdeploy::vision::ocr::DBDetector* detector_ = nullptr;
fastdeploy::vision::ocr::Recognizer* recognizer_ = nullptr;
fastdeploy::vision::ocr::StructureV2Table* table_ = nullptr;
private:
int rec_batch_size_ = 6;
};
namespace application {
namespace ocrsystem {
typedef pipeline::PPStructureV2Table PPStructureV2TableSystem;
} // namespace ocrsystem
} // namespace application
} // namespace pipeline
} // namespace fastdeploy