mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00

* first draft * update api name * fix bug * fix bug and * fix bug in c api * fix bug in c_api --------- Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
178 lines
6.8 KiB
C++
Executable File
178 lines
6.8 KiB
C++
Executable File
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision.h"
|
|
#ifdef WIN32
|
|
const char sep = '\\';
|
|
#else
|
|
const char sep = '/';
|
|
#endif
|
|
|
|
void InitAndInfer(const std::string &det_model_dir,
|
|
const std::string &rec_model_dir,
|
|
const std::string &table_model_dir,
|
|
const std::string &rec_label_file,
|
|
const std::string &table_char_dict_path,
|
|
const std::string &image_file,
|
|
const fastdeploy::RuntimeOption &option) {
|
|
auto det_model_file = det_model_dir + sep + "inference.pdmodel";
|
|
auto det_params_file = det_model_dir + sep + "inference.pdiparams";
|
|
|
|
auto rec_model_file = rec_model_dir + sep + "inference.pdmodel";
|
|
auto rec_params_file = rec_model_dir + sep + "inference.pdiparams";
|
|
|
|
auto table_model_file = table_model_dir + sep + "inference.pdmodel";
|
|
auto table_params_file = table_model_dir + sep + "inference.pdiparams";
|
|
|
|
auto det_option = option;
|
|
auto rec_option = option;
|
|
auto table_option = option;
|
|
|
|
// The rec model can inference a batch of images now.
|
|
// User could initialize the inference batch size and set them after create
|
|
// PP-OCR model.
|
|
int rec_batch_size = 1;
|
|
|
|
// If use TRT backend, the dynamic shape will be set as follow.
|
|
// We recommend that users set the length and height of the detection model to
|
|
// a multiple of 32.
|
|
// We also recommend that users set the Trt input shape as follow.
|
|
det_option.SetTrtInputShape("x", {1, 3, 64, 64}, {1, 3, 640, 640},
|
|
{1, 3, 960, 960});
|
|
rec_option.SetTrtInputShape("x", {1, 3, 48, 10}, {rec_batch_size, 3, 48, 320},
|
|
{rec_batch_size, 3, 48, 2304});
|
|
table_option.SetTrtInputShape("x", {1, 3, 488, 488}, {1, 3, 488, 488},
|
|
{1, 3, 488, 488});
|
|
|
|
// Users could save TRT cache file to disk as follow.
|
|
det_option.SetTrtCacheFile(det_model_dir + sep + "det_trt_cache.trt");
|
|
rec_option.SetTrtCacheFile(rec_model_dir + sep + "rec_trt_cache.trt");
|
|
table_option.SetTrtCacheFile(table_model_dir + sep + "table_trt_cache.trt");
|
|
|
|
auto det_model = fastdeploy::vision::ocr::DBDetector(
|
|
det_model_file, det_params_file, det_option);
|
|
auto rec_model = fastdeploy::vision::ocr::Recognizer(
|
|
rec_model_file, rec_params_file, rec_label_file, rec_option);
|
|
auto table_model = fastdeploy::vision::ocr::StructureV2Table(
|
|
table_model_file, table_params_file, table_char_dict_path, table_option);
|
|
|
|
assert(det_model.Initialized());
|
|
assert(rec_model.Initialized());
|
|
assert(table_model.Initialized());
|
|
|
|
// Parameters settings for pre and post processing of Det/Cls/Rec Models.
|
|
// All parameters are set to default values.
|
|
det_model.GetPreprocessor().SetMaxSideLen(960);
|
|
det_model.GetPostprocessor().SetDetDBThresh(0.3);
|
|
det_model.GetPostprocessor().SetDetDBBoxThresh(0.6);
|
|
det_model.GetPostprocessor().SetDetDBUnclipRatio(1.5);
|
|
det_model.GetPostprocessor().SetDetDBScoreMode("slow");
|
|
det_model.GetPostprocessor().SetUseDilation(0);
|
|
|
|
rec_model.GetPreprocessor().SetStaticShapeInfer(true);
|
|
rec_model.GetPreprocessor().SetRecImageShape({3, 48, 320});
|
|
|
|
// The classification model is optional, so the PP-OCR can also be connected
|
|
// in series as follows
|
|
auto ppstructurev2_table = fastdeploy::pipeline::PPStructureV2Table(
|
|
&det_model, &rec_model, &table_model);
|
|
|
|
// Set inference batch size for cls model and rec model, the value could be -1
|
|
// and 1 to positive infinity.
|
|
// When inference batch size is set to -1, it means that the inference batch
|
|
// size of the rec models will be the same as the number of boxes detected
|
|
// by the det model.
|
|
ppstructurev2_table.SetRecBatchSize(rec_batch_size);
|
|
|
|
if (!ppstructurev2_table.Initialized()) {
|
|
std::cerr << "Failed to initialize PP-OCR-Table." << std::endl;
|
|
return;
|
|
}
|
|
|
|
auto im = cv::imread(image_file);
|
|
auto im_bak = im.clone();
|
|
|
|
fastdeploy::vision::OCRResult result;
|
|
if (!ppstructurev2_table.Predict(&im, &result)) {
|
|
std::cerr << "Failed to predict." << std::endl;
|
|
return;
|
|
}
|
|
|
|
std::cout << result.Str() << std::endl;
|
|
|
|
auto vis_im = fastdeploy::vision::VisOcr(im_bak, result);
|
|
cv::imwrite("vis_result.jpg", vis_im);
|
|
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
|
}
|
|
|
|
int main(int argc, char *argv[]) {
|
|
if (argc < 8) {
|
|
std::cout << "Usage: infer_ppstructurev2_table path/to/det_model "
|
|
"path/to/rec_model "
|
|
"path/to/table_model path/to/rec_label_file "
|
|
"path/to/table_char_dict_path path/to/image "
|
|
"run_option, "
|
|
"e.g ./infer_ppstructurev2_table ./ch_PP-OCRv3_det_infer "
|
|
"./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer "
|
|
"./ppocr_keys_v1.txt ./12.jpg 0"
|
|
<< std::endl;
|
|
std::cout << "The data type of run_option is int, e.g. 0: run with paddle "
|
|
"inference on cpu;"
|
|
<< std::endl;
|
|
return -1;
|
|
}
|
|
|
|
fastdeploy::RuntimeOption option;
|
|
int flag = std::atoi(argv[7]);
|
|
std::cout << "flag: " << flag << std::endl;
|
|
|
|
if (flag == 0) {
|
|
option.UseCpu();
|
|
option.UsePaddleBackend(); // Paddle Inference
|
|
} else if (flag == 1) {
|
|
option.UseCpu();
|
|
option.UseOpenVINOBackend(); // OpenVINO
|
|
} else if (flag == 2) {
|
|
option.UseCpu();
|
|
option.UseOrtBackend(); // ONNX Runtime
|
|
} else if (flag == 3) {
|
|
option.UseCpu();
|
|
option.UseLiteBackend(); // Paddle Lite
|
|
} else if (flag == 4) {
|
|
option.UseGpu();
|
|
option.UsePaddleBackend(); // Paddle Inference
|
|
} else if (flag == 5) {
|
|
option.UseGpu();
|
|
option.UsePaddleInferBackend();
|
|
option.paddle_infer_option.collect_trt_shape = true;
|
|
option.paddle_infer_option.enable_trt = true; // Paddle-TensorRT
|
|
} else if (flag == 6) {
|
|
option.UseGpu();
|
|
option.UseOrtBackend(); // ONNX Runtime
|
|
} else if (flag == 7) {
|
|
option.UseGpu();
|
|
option.UseTrtBackend(); // TensorRT
|
|
}
|
|
|
|
std::string det_model_dir = argv[1];
|
|
std::string rec_model_dir = argv[2];
|
|
std::string table_model_dir = argv[3];
|
|
std::string rec_label_file = argv[4];
|
|
std::string table_char_dict_path = argv[5];
|
|
std::string test_image = argv[6];
|
|
InitAndInfer(det_model_dir, rec_model_dir, table_model_dir, rec_label_file,
|
|
table_char_dict_path, test_image, option);
|
|
return 0;
|
|
}
|