mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* Refactor PaddleSeg with preprocessor && postprocessor * Fix bugs * Delete redundancy code * Modify by comments * Refactor according to comments * Add batch evaluation * Add single test script * Add ppliteseg single test script && fix eval(raise) error * fix bug * Fix evaluation segmentation.py batch predict * Fix segmentation evaluation bug * Fix evaluation segmentation bugs * Update segmentation result docs * Update old predict api and DisableNormalizeAndPermute * Update resize segmentation label map with cv::INTER_NEAREST * Add Model Clone function for PaddleClas && PaddleDet && PaddleSeg * Add multi thread demo * Add python model clone function * Add multi thread python && C++ example * Fix bug Co-authored-by: Jason <jiangjiajun@baidu.com>
129 lines
3.6 KiB
Python
129 lines
3.6 KiB
Python
import numpy as np
|
||
from threading import Thread
|
||
import fastdeploy as fd
|
||
import cv2
|
||
import os
|
||
import psutil
|
||
|
||
|
||
def parse_arguments():
|
||
import argparse
|
||
import ast
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument(
|
||
"--model", required=True, help="Path of PaddleClas model.")
|
||
parser.add_argument(
|
||
"--image_path",
|
||
type=str,
|
||
required=True,
|
||
help="The directory or path or file list of the images to be predicted."
|
||
)
|
||
parser.add_argument(
|
||
"--topk", type=int, default=1, help="Return topk results.")
|
||
parser.add_argument(
|
||
"--device",
|
||
type=str,
|
||
default='cpu',
|
||
help="Type of inference device, support 'cpu' or 'gpu' or 'ipu'.")
|
||
parser.add_argument(
|
||
"--use_trt",
|
||
type=ast.literal_eval,
|
||
default=False,
|
||
help="Wether to use tensorrt.")
|
||
parser.add_argument("--thread_num", type=int, default=1, help="thread num")
|
||
return parser.parse_args()
|
||
|
||
|
||
def get_image_list(image_path):
|
||
image_list = []
|
||
if os.path.isfile(image_path):
|
||
image_list.append(image_path)
|
||
# load image in a directory
|
||
elif os.path.isdir(image_path):
|
||
for root, dirs, files in os.walk(image_path):
|
||
for f in files:
|
||
image_list.append(os.path.join(root, f))
|
||
else:
|
||
raise FileNotFoundError(
|
||
'{} is not found. it should be a path of image, or a directory including images.'.
|
||
format(image_path))
|
||
|
||
if len(image_list) == 0:
|
||
raise RuntimeError(
|
||
'There are not image file in `--image_path`={}'.format(image_path))
|
||
|
||
return image_list
|
||
|
||
|
||
def build_option(args):
|
||
option = fd.RuntimeOption()
|
||
|
||
if args.device.lower() == "gpu":
|
||
option.use_gpu()
|
||
|
||
if args.device.lower() == "ipu":
|
||
option.use_ipu()
|
||
|
||
if args.use_trt:
|
||
option.use_trt_backend()
|
||
return option
|
||
|
||
|
||
def predict(model, img_list, topk):
|
||
result_list = []
|
||
# 预测图片分类结果
|
||
for image in img_list:
|
||
im = cv2.imread(image)
|
||
result = model.predict(im, topk)
|
||
result_list.append(result)
|
||
return result_list
|
||
|
||
|
||
class WrapperThread(Thread):
|
||
def __init__(self, func, args):
|
||
super(WrapperThread, self).__init__()
|
||
self.func = func
|
||
self.args = args
|
||
|
||
def run(self):
|
||
self.result = self.func(*self.args)
|
||
|
||
def get_result(self):
|
||
return self.result
|
||
|
||
|
||
if __name__ == '__main__':
|
||
args = parse_arguments()
|
||
|
||
thread_num = args.thread_num
|
||
imgs_list = get_image_list(args.image_path)
|
||
# 配置runtime,加载模型
|
||
runtime_option = build_option(args)
|
||
|
||
model_file = os.path.join(args.model, "inference.pdmodel")
|
||
params_file = os.path.join(args.model, "inference.pdiparams")
|
||
config_file = os.path.join(args.model, "inference_cls.yaml")
|
||
model = fd.vision.classification.PaddleClasModel(
|
||
model_file, params_file, config_file, runtime_option=runtime_option)
|
||
threads = []
|
||
image_num_each_thread = int(len(imgs_list) / thread_num)
|
||
for i in range(thread_num):
|
||
if i == thread_num - 1:
|
||
t = WrapperThread(
|
||
predict,
|
||
args=(model, imgs_list[i * image_num_each_thread:], i))
|
||
else:
|
||
t = WrapperThread(
|
||
predict,
|
||
args=(model.clone(), imgs_list[i * image_num_each_thread:(
|
||
i + 1) * image_num_each_thread - 1], i))
|
||
threads.append(t)
|
||
t.start()
|
||
|
||
for i in range(thread_num):
|
||
threads[i].join()
|
||
|
||
for i in range(thread_num):
|
||
for result in threads[i].get_result():
|
||
print('thread:', i, ', result: ', result)
|