Files
FastDeploy/tests/model_loader/test_offline_model.py
bukejiyu 29ed617f0f [v1 loader]qwen Offline fp8 (#4036)
* support offline fp8

* update ut

* update ut

* update ut

* fix

* update

* update
2025-09-15 13:44:11 +08:00

105 lines
2.9 KiB
Python

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import pytest
prompts = ["解释下'温故而知新'", "who are you?"]
current_dir = os.path.dirname(os.path.abspath(__file__))
project_root = os.path.abspath(os.path.join(current_dir, ".."))
if project_root not in sys.path:
sys.path.insert(0, project_root)
from tests.model_loader.utils import (
form_model_get_output_topp0,
get_torch_model_path,
run_with_timeout,
)
FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8313))
FD_CACHE_QUEUE_PORT = int(os.getenv("FD_CACHE_QUEUE_PORT", 8333))
model_param_map = {
"Qwen3-30B-A3B-FP8": {
"tensor_parallel_size": 2,
"quantizations": [
{
"quant_type": "None",
"backend": "triton",
"env": {"DG_NVCC_OVERRIDE_CPP_STANDARD": "17"},
},
],
},
}
params = []
for model, cfg in model_param_map.items():
for q in cfg["quantizations"]:
if isinstance(q, dict):
quant, backend, env = q["quant_type"], q.get("backend", "default"), q.get("env", {})
else:
quant, backend, env = q, "default", {}
params.append(
pytest.param(
model,
cfg.get("tensor_parallel_size", 1),
cfg.get("max_model_len", 1024),
quant,
cfg.get("max_tokens", 32),
env,
marks=[pytest.mark.core_model],
id=f"offline_quant_{model}.{quant}.{backend}",
)
)
@pytest.mark.parametrize(
"model_name_or_path,tensor_parallel_size,max_model_len,quantization,max_tokens,env",
params,
)
def test_offline_model(
fd_runner,
model_name_or_path: str,
tensor_parallel_size: int,
max_model_len: int,
max_tokens: int,
quantization: str,
env,
monkeypatch,
) -> None:
torch_model_path = get_torch_model_path(model_name_or_path)
if env:
for k, v in env.items():
monkeypatch.setenv(k, v)
_ = run_with_timeout(
target=form_model_get_output_topp0,
args=(
fd_runner,
torch_model_path,
tensor_parallel_size,
max_model_len,
max_tokens,
quantization,
"default_v1",
FD_ENGINE_QUEUE_PORT,
prompts,
FD_CACHE_QUEUE_PORT,
),
)