mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00
105 lines
2.9 KiB
Python
105 lines
2.9 KiB
Python
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import sys
|
|
|
|
import pytest
|
|
|
|
prompts = ["解释下'温故而知新'", "who are you?"]
|
|
|
|
current_dir = os.path.dirname(os.path.abspath(__file__))
|
|
project_root = os.path.abspath(os.path.join(current_dir, ".."))
|
|
if project_root not in sys.path:
|
|
sys.path.insert(0, project_root)
|
|
|
|
from tests.model_loader.utils import (
|
|
form_model_get_output_topp0,
|
|
get_torch_model_path,
|
|
run_with_timeout,
|
|
)
|
|
|
|
FD_ENGINE_QUEUE_PORT = int(os.getenv("FD_ENGINE_QUEUE_PORT", 8313))
|
|
FD_CACHE_QUEUE_PORT = int(os.getenv("FD_CACHE_QUEUE_PORT", 8333))
|
|
|
|
|
|
model_param_map = {
|
|
"Qwen3-30B-A3B-FP8": {
|
|
"tensor_parallel_size": 2,
|
|
"quantizations": [
|
|
{
|
|
"quant_type": "None",
|
|
"backend": "triton",
|
|
"env": {"DG_NVCC_OVERRIDE_CPP_STANDARD": "17"},
|
|
},
|
|
],
|
|
},
|
|
}
|
|
|
|
params = []
|
|
for model, cfg in model_param_map.items():
|
|
for q in cfg["quantizations"]:
|
|
if isinstance(q, dict):
|
|
quant, backend, env = q["quant_type"], q.get("backend", "default"), q.get("env", {})
|
|
else:
|
|
quant, backend, env = q, "default", {}
|
|
params.append(
|
|
pytest.param(
|
|
model,
|
|
cfg.get("tensor_parallel_size", 1),
|
|
cfg.get("max_model_len", 1024),
|
|
quant,
|
|
cfg.get("max_tokens", 32),
|
|
env,
|
|
marks=[pytest.mark.core_model],
|
|
id=f"offline_quant_{model}.{quant}.{backend}",
|
|
)
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model_name_or_path,tensor_parallel_size,max_model_len,quantization,max_tokens,env",
|
|
params,
|
|
)
|
|
def test_offline_model(
|
|
fd_runner,
|
|
model_name_or_path: str,
|
|
tensor_parallel_size: int,
|
|
max_model_len: int,
|
|
max_tokens: int,
|
|
quantization: str,
|
|
env,
|
|
monkeypatch,
|
|
) -> None:
|
|
torch_model_path = get_torch_model_path(model_name_or_path)
|
|
if env:
|
|
for k, v in env.items():
|
|
monkeypatch.setenv(k, v)
|
|
|
|
_ = run_with_timeout(
|
|
target=form_model_get_output_topp0,
|
|
args=(
|
|
fd_runner,
|
|
torch_model_path,
|
|
tensor_parallel_size,
|
|
max_model_len,
|
|
max_tokens,
|
|
quantization,
|
|
"default_v1",
|
|
FD_ENGINE_QUEUE_PORT,
|
|
prompts,
|
|
FD_CACHE_QUEUE_PORT,
|
|
),
|
|
)
|