Files
FastDeploy/fastdeploy/worker/worker_process.py
bukejiyu 29ed617f0f [v1 loader]qwen Offline fp8 (#4036)
* support offline fp8

* update ut

* update ut

* update ut

* fix

* update

* update
2025-09-15 13:44:11 +08:00

802 lines
32 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import argparse
import json
import time
from typing import Tuple
import numpy as np
import paddle
import paddle.distributed as dist
from paddle.distributed import fleet
from fastdeploy import envs
from fastdeploy.config import (
CacheConfig,
DecodingConfig,
DeviceConfig,
EarlyStopConfig,
ErnieArchitectures,
FDConfig,
GraphOptimizationConfig,
LoadConfig,
MobaAttentionConfig,
ModelConfig,
ParallelConfig,
SpeculativeConfig,
)
from fastdeploy.input.ernie4_5_tokenizer import Ernie4_5Tokenizer
from fastdeploy.inter_communicator import EngineWorkerQueue as TaskQueue
from fastdeploy.inter_communicator import IPCSignal
from fastdeploy.model_executor.layers.quantization import parse_quant_config
from fastdeploy.platforms import current_platform
from fastdeploy.utils import get_logger, parse_quantization
from fastdeploy.worker.worker_base import WorkerBase
logger = get_logger("worker_process", "worker_process.log")
def get_worker(fd_config: FDConfig, local_rank: int, rank: int) -> WorkerBase:
"""
get worker of different device
"""
if fd_config.model_config.enable_logprob and not current_platform.is_cuda():
raise NotImplementedError("Only CUDA platform supports logprob.")
if current_platform.is_dcu():
from fastdeploy.worker.dcu_worker import DcuWorker
return DcuWorker(fd_config=fd_config, local_rank=local_rank, rank=rank)
if current_platform.is_cuda():
from fastdeploy.worker.gpu_worker import GpuWorker
return GpuWorker(fd_config=fd_config, local_rank=local_rank, rank=rank)
if current_platform.is_xpu():
from fastdeploy.worker.xpu_worker import XpuWorker
return XpuWorker(fd_config=fd_config, local_rank=local_rank, rank=rank)
if current_platform.is_iluvatar():
from fastdeploy.worker.iluvatar_worker import IluvatarWorker
return IluvatarWorker(fd_config=fd_config, local_rank=local_rank, rank=rank)
if current_platform.is_gcu():
from fastdeploy.worker.gcu_worker import GcuWorker
return GcuWorker(fd_config=fd_config, local_rank=local_rank, rank=rank)
if current_platform.is_maca():
from fastdeploy.worker.metax_worker import MetaxWorker
return MetaxWorker(fd_config=fd_config, local_rank=local_rank, rank=rank)
def init_distributed_environment(seed: int = 20) -> Tuple[int, int]:
"""Initialize Paddle Fleet and get rank of worker"""
# Global rank
ranks = dist.get_world_size()
dist_strategy = fleet.DistributedStrategy()
dist_strategy.hybrid_configs = {
"dp_degree": 1,
"mp_degree": ranks,
"pp_degree": 1,
"sharding_degree": 1,
}
# Set control in tensor parallel
dist_strategy.tensor_parallel_configs = {"tensor_init_seed": seed}
fleet.init(is_collective=True, strategy=dist_strategy)
# Local rank
local_rank = fleet.worker_index()
return ranks, local_rank
def update_fd_config_for_mm(fd_config: FDConfig) -> None:
architectures = fd_config.model_config.architectures
if fd_config.model_config.enable_mm and ErnieArchitectures.contains_ernie_arch(architectures):
tokenizer = Ernie4_5Tokenizer.from_pretrained(
fd_config.model_config.model,
model_max_length=fd_config.parallel_config.max_model_len,
padding_side="right",
use_fast=False,
)
tokenizer.ignored_index = -100
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.unk_token
fd_config.model_config.tensor_parallel_degree = fd_config.parallel_config.tensor_parallel_size
fd_config.model_config.tensor_parallel_rank = fd_config.parallel_config.tensor_parallel_rank
vision_config = fd_config.model_config.vision_config
vision_config.dtype = fd_config.model_config.dtype
# vision_config.tensor_parallel_degree = fd_config.parallel_config.tensor_parallel_size
# vision_config.tensor_parallel_rank = fd_config.parallel_config.tensor_parallel_rank
fd_config.model_config.im_patch_id = tokenizer.get_vocab()["<|IMAGE_PLACEHOLDER|>"]
fd_config.model_config.think_end_id = tokenizer.get_vocab()["</think>"]
fd_config.model_config.sequence_parallel = fd_config.parallel_config.sequence_parallel
class PaddleDisWorkerProc:
"""
Paddle Distributed wrapper for fastdeploy.worker.Worker,
for handling single-node multi-GPU tensor parallel.
The wrapper internally executes an event loop that continuously executes requests
in the task queue. Control flow is transmitted by IPC.
"""
def __init__(self, fd_config: FDConfig, ranks: int = 1, local_rank: int = 0) -> None:
"""
Initialize a distributed worker and task queue for single-node multi-GPU setup.
Args:
fd_config (FDConfig): Arguments related to inference, containing
attributes such as weight_dtype, act_dtype, mp_size, hidden_size, head_dim,
num_attention_heads, and ffn_hidden_size.
"""
self.ranks = ranks
self.local_rank = local_rank
self.fd_config = fd_config
self.parallel_config = fd_config.parallel_config
self.cache_config = fd_config.cache_config
# TODO(gongshaotian): Use worker factory to get worker
self.worker = get_worker(fd_config=fd_config, local_rank=self.local_rank, rank=self.ranks)
self.max_chips_per_node = 16 if current_platform.is_iluvatar() else 8
def init_health_status(self) -> None:
"""
Initialize the health status of the worker.
Worker Status:
worker_ready_signal:
worker_healthy_live_signal:
exist_task_signal:
exist_swapped_task_signal:
model_weights_status:
"""
self.max_chips_per_node = 16 if current_platform.is_iluvatar() else 8
if self.parallel_config.data_parallel_size > 1 and not envs.FD_ENABLE_MULTI_API_SERVER:
launched_expert_service_signal_data = np.zeros(
shape=[min(self.parallel_config.data_parallel_size, self.max_chips_per_node)], dtype=np.int32
)
self.launched_expert_service_signal = IPCSignal(
name="launched_expert_service_signal",
array=launched_expert_service_signal_data,
dtype=np.int32,
suffix=self.parallel_config.engine_pid,
create=False,
)
while self.launched_expert_service_signal.value[self.local_rank % self.max_chips_per_node] == 0:
pass
# init worker_ready_signal
array_size = min(
self.max_chips_per_node,
self.parallel_config.tensor_parallel_size * self.parallel_config.data_parallel_size,
)
workers_ready = np.zeros(shape=[array_size], dtype=np.int32)
self.worker_ready_signal = IPCSignal(
name="worker_ready_signal",
array=workers_ready,
dtype=np.int32,
suffix=self.parallel_config.engine_pid,
create=False,
)
self.worker_ready_signal.value[self.local_rank % self.max_chips_per_node] = 1
# init worker_healthy_live_signal
workers_alive = np.zeros(shape=[min(array_size, self.parallel_config.tensor_parallel_size)], dtype=np.int32)
self.worker_healthy_live_signal = IPCSignal(
name="worker_healthy_live_signal",
array=workers_alive,
dtype=np.int32,
suffix=self.parallel_config.engine_worker_queue_port,
create=False,
)
local_rank = self.local_rank % self.parallel_config.tensor_parallel_size
self.worker_healthy_live_signal.value[local_rank % self.max_chips_per_node] = int(time.time())
# init model_weights_status
workers_model_weights = np.zeros(shape=[1], dtype=np.int32)
self.model_weights_status = IPCSignal(
name="model_weights_status",
array=workers_model_weights,
dtype=np.int32,
suffix=self.parallel_config.engine_worker_queue_port,
create=False,
)
# init exist_task_signal
workers_exist_task = np.zeros([1], dtype=np.int32)
self.exist_task_signal = IPCSignal(
name="exist_task_signal",
array=workers_exist_task,
dtype=np.int32,
suffix=self.parallel_config.engine_worker_queue_port,
create=False,
)
# init exist_swapped_task_signal
workers_swapped_task = np.zeros(shape=[1], dtype=np.int32)
self.exist_swapped_task_signal = IPCSignal(
name="exist_swapped_task_signal",
array=workers_swapped_task,
dtype=np.int32,
suffix=self.parallel_config.engine_worker_queue_port,
create=False,
)
# init exist_prefill_task_signal
exist_prefill_task_signal_data = np.zeros([1], dtype=np.int32)
self.exist_prefill_task_signal = IPCSignal(
name="exist_prefill_task_signal",
array=exist_prefill_task_signal_data,
dtype=np.int32,
suffix=self.parallel_config.engine_worker_queue_port,
create=False,
)
def event_loop_normal(self) -> None:
"""Main event loop for Paddle Distributed Workers.
TODO(gongshaotian): support remote calling of functions that control worker.
"""
# Currently, only support single node
self.nnode = int((self.parallel_config.tensor_parallel_size + 7) // 8)
req_ids = []
num_running_requests = 0
self.model_weights_signal = paddle.zeros([1], dtype=paddle.int32)
while True:
if self.local_rank % self.parallel_config.tensor_parallel_size == 0:
if self.model_weights_status.value[0] != 0:
self.model_weights_signal[0] = int(self.model_weights_status.value[0])
if self.fd_config.load_config.dynamic_load_weight and self.parallel_config.enable_expert_parallel:
paddle.distributed.broadcast(self.model_weights_signal, src=0, group=self.parallel_config.ep_group)
if self.fd_config.load_config.dynamic_load_weight:
paddle.distributed.broadcast(self.model_weights_signal, src=0, group=self.parallel_config.tp_group)
self.insert_step = False
req_dicts = None
local_rank = self.local_rank % self.parallel_config.tensor_parallel_size
self.worker_healthy_live_signal.value[local_rank % self.max_chips_per_node] = int(time.time())
# The first worker detects whether there are tasks in the task queue
if self.local_rank % self.parallel_config.tensor_parallel_size == 0:
if self.task_queue.num_tasks() > 0:
# VL only support 1 batch to prefill
if envs.ENABLE_V1_KVCACHE_SCHEDULER or not (
self.fd_config.model_config.enable_mm and self.worker.exist_prefill()
):
if self.nnode > 1 and self.parallel_config.tensor_parallel_size > self.max_chips_per_node:
self.task_queue.read_finish_flag.set(1)
else:
self.exist_task_signal.value[0] = 1
if self.parallel_config.tensor_parallel_size > 1:
# Synchronize the signal for other workers
paddle.distributed.barrier(self.parallel_config.tp_group)
if self.fd_config.load_config.dynamic_load_weight:
if self.parallel_config.enable_expert_parallel:
paddle.distributed.barrier(self.parallel_config.ep_group)
else:
paddle.distributed.barrier(self.parallel_config.tp_group)
if self.model_weights_signal[0] != 0:
logger.info(f"Rank: {self.local_rank} has updated parameters.")
from fastdeploy.rl.dynamic_weight_manager import (
DynamicWeightManager,
)
self.model_weights_status.value[0] = self.model_weights_signal[0]
DynamicWeightManager.check_model_weights_status(
self.model_weights_status,
# model_weights_signal
self.worker.model_runner,
self.parallel_config.engine_worker_queue_port,
)
self.model_weights_signal[0] = 0
if self.exist_task_signal.value[0] == 1 or self.task_queue.read_finish_flag.get() == 1:
logger.info(f"Rank: {self.local_rank} Detected new requests.")
self.insert_step = True
tasks, read_finish = self.task_queue.get_tasks()
if read_finish:
# Ensure that every worker get the task
self.exist_task_signal.value[0] = 0
self.task_queue.read_finish_flag.set(0)
req_dicts = []
for req_dict, bsz in tasks:
num_running_requests = int(bsz)
req_dicts.extend(req_dict)
req_ids = [req.request_id for req in req_dicts]
logger.info(
f"Rank: {self.local_rank}, num_running_requests: {num_running_requests}, "
f"num_insert_requests: {len(req_dicts)}, req_ids: {req_ids}"
)
# Process prefill inputs
self.worker.preprocess_new_task(req_dicts, num_running_requests)
if (not self.parallel_config.use_ep) and (not self.worker.model_runner.not_need_stop()):
if self.ranks > 1:
paddle.distributed.barrier(self.parallel_config.tp_group)
time.sleep(0.001)
continue
# Execute model to generate token. The generated token will be written to the buffer.
# These generated tokens can be obtained through get_output op.
self.worker.execute_model(req_dicts, num_running_requests)
self.exist_prefill_task_signal.value[0] = self.worker.exist_prefill()
def initialize_kv_cache(self) -> None:
"""Profiles the peak memory usage of the model to determine how many
KV blocks may be allocated without OOMs.
The engine will first conduct a profiling of the existing memory usage.
Then, it calculate the maximum possible number of GPU and CPU blocks
that can be allocated with the remaining free memory.
.. tip::
You may limit the usage of GPU memory
by adjusting the `gpu_memory_utilization` parameter.
"""
if self.fd_config.parallel_config.do_profile:
# 1. Get available memory(bytes)
available_kv_cache_memory = self.worker.determine_available_memory()
logger.info(f"------- available_kv_cache_memory:{available_kv_cache_memory / 1024**3} GB --------")
# 2. Calculate the appropriate number of blocks
model_block_memory_used = self.worker.cal_theortical_kvcache()
num_blocks_local = int(available_kv_cache_memory // model_block_memory_used)
# NOTE(liuzichang): Too many block will lead to illegal memory access
# We will develop dynamic limits in future.
if num_blocks_local > 40000:
logger.info(f"------- Reset num_blocks_local {num_blocks_local} to 40000")
num_blocks_local = min(40000, num_blocks_local)
logger.info(f"------- model_block_memory_used:{model_block_memory_used} --------")
logger.info(f"------- num_blocks_local:{num_blocks_local} --------")
if num_blocks_local <= 0:
raise ValueError(
"The total number of blocks cannot be less than zero."
"Please increase gpu_memory_utilization"
"Or decrease max_num_batched_tokens(max model length) "
)
if self.ranks > 1:
num_blocks_local = paddle.full(shape=[1], fill_value=num_blocks_local, dtype="int32")
dist.all_reduce(num_blocks_local, op=dist.ReduceOp.MIN)
num_blocks_local = num_blocks_local.item()
if self.local_rank % self.max_chips_per_node == 0:
# 3. Send IPCSignal
get_profile_block_num = np.zeros(shape=[1], dtype=np.int32)
self.get_profile_block_num_signal = IPCSignal(
name="get_profile_block_num",
array=get_profile_block_num,
dtype=np.int32,
suffix=self.parallel_config.engine_pid,
create=False,
)
self.get_profile_block_num_signal.value[0] = num_blocks_local
else:
num_blocks_local = self.fd_config.parallel_config.total_block_num
logger.info(f"------- num_blocks_global: {num_blocks_local} --------")
# wait engine launch cache_manager
if self.cache_config.enable_prefix_caching or self.parallel_config.splitwise_role != "mixed":
launched_cache_manager_signal_data = np.zeros([1], dtype=np.int32)
self.launched_cache_manager_signal = IPCSignal(
name="launched_cache_manager_signal",
array=launched_cache_manager_signal_data,
dtype=np.int32,
suffix=self.parallel_config.engine_pid,
create=False,
)
while np.any(self.launched_cache_manager_signal.value[0] <= 0):
time.sleep(0.01)
# 4. init kv_cache with accurate num_blocks
self.worker.initialize_cache(num_gpu_blocks=num_blocks_local)
def graph_optimize_and_warm_up_model(self) -> None:
self.worker.graph_optimize_and_warm_up_model()
def init_device(self) -> None:
"""Initialize device and Construct model runner"""
self.worker.init_device()
def start_task_queue_service(self):
# Initialize task queue
task_address = (
self.parallel_config.pod_ip,
self.parallel_config.engine_worker_queue_port,
)
logger.info(f"connect task queue address {task_address}")
self.task_queue = TaskQueue(
address=task_address,
is_server=False,
num_client=self.parallel_config.tensor_parallel_size,
client_id=self.parallel_config.tensor_parallel_rank,
local_data_parallel_id=self.parallel_config.data_parallel_rank,
)
def load_model(self) -> None:
"""Load weights and create model"""
self.worker.load_model()
loaded_model_signal_data = np.zeros(shape=[1], dtype=np.int32)
self.loaded_model_signal = IPCSignal(
name="loaded_model_signal",
array=loaded_model_signal_data,
dtype=np.int32,
suffix=self.parallel_config.engine_pid,
create=False,
)
if self.ranks > 1:
paddle.distributed.barrier()
self.loaded_model_signal.value[0] = 1
def parse_args():
"""
Parse args from command line
"""
parser = argparse.ArgumentParser("FastDeploy LLM Inference")
parser.add_argument(
"-m",
"--model",
type=str,
default="./output",
help="model dir",
)
parser.add_argument("-mbs", "--max_num_seqs", type=int, default=34, help="max batch size")
parser.add_argument("--total_block_num", type=int, default=2000)
parser.add_argument("--block_size", type=int, default=64)
parser.add_argument("--pod_ip", type=str, default="127.0.0.1")
parser.add_argument("--engine_worker_queue_port", type=str, default="9923")
parser.add_argument("--max_model_len", type=int, default=3072, help="max model len")
parser.add_argument("--device_ids", type=str, default="0", help="cuda visible devices")
parser.add_argument("--dtype", type=str, default="bfloat16", help="input dtype")
parser.add_argument("--enc_dec_block_num", type=int, default=1, help="encoder's decoder num")
parser.add_argument(
"--kv_cache_ratio",
type=float,
default=0.7,
help="kv cache ratio for input",
)
parser.add_argument("--first_token_id", type=int, default=1, help="first token id")
parser.add_argument(
"--gpu_memory_utilization",
type=float,
default=0.9,
help="gpu memory utilization",
)
parser.add_argument("--engine_pid", type=int, default=None, help="Process ID of engine")
parser.add_argument("--do_profile", action="store_true", help="do profile or not")
parser.add_argument("--pad_token_id", type=int, default=-1, help="pad token id")
parser.add_argument("--eos_tokens_lens", type=int, default=2, help="eos token lens")
parser.add_argument(
"--enable_chunked_prefill",
action="store_true",
help="enable chunked prefill",
)
parser.add_argument(
"--speculative_config",
type=json.loads,
default=None,
help="Configuration of SpeculativeConfig.",
)
parser.add_argument(
"--max_num_batched_tokens",
type=int,
default=2048,
help="max num batched tokens",
)
parser.add_argument(
"--enable_prefix_caching",
action="store_true",
help="enable prefix cache",
)
parser.add_argument(
"--disable_custom_all_reduce",
action="store_true",
help="enable custom all-reduce",
)
parser.add_argument("--splitwise_role", type=str, default="mixed", help="splitwise role")
parser.add_argument(
"--tensor_parallel_size",
type=int,
default=1,
help="tensor parallel size",
)
parser.add_argument(
"--expert_parallel_size",
type=int,
default=1,
help="expert parallel size",
)
parser.add_argument(
"--data_parallel_size",
type=int,
default=1,
help="data parallel size",
)
parser.add_argument(
"--enable_expert_parallel",
action="store_true",
help="enable expert parallel",
)
parser.add_argument("--ori_vocab_size", type=int, default=None)
parser.add_argument(
"--quantization",
type=json.loads,
default=None,
help="Quantization name for the model, currently support "
"'wint4', 'wint8',"
"default is None. The priority of this configuration "
"is lower than that of the config file. "
"More complex quantization methods need to be configured via the config file.",
)
parser.add_argument(
"--graph_optimization_config",
type=json.loads,
default=None,
help="Configuration of Graph optimization backend.",
)
parser.add_argument(
"--moba_attention_config",
type=json.loads,
default=None,
help="Configation of moba attention.",
)
parser.add_argument(
"--guided_decoding_backend",
type=str,
default="off",
help="guided decoding backend",
)
parser.add_argument(
"--disable_any_whitespace",
action="store_false",
help="Disable any whitespace for guided decoding.",
)
parser.add_argument(
"--dynamic_load_weight",
action="store_true",
help="Enable dynamic weight loading strategy",
)
parser.add_argument(
"--load_strategy",
type=str,
choices=["ipc", "ipc_snapshot"],
default="ipc_snapshot",
help="Weight loading method when dynamic loading is enabled: "
"'ipc': real-time IPC streaming with automatic resharding, "
"'ipc_snapshot': load from disk snapshot of IPC weights.",
)
parser.add_argument(
"--enable_logprob",
action="store_true",
help="Enable output of token-level log probabilities.",
)
parser.add_argument(
"--reasoning_parser",
type=str,
default=None,
help="Flag specifies the reasoning parser to use for extracting reasoning content from the model output",
)
parser.add_argument(
"--early_stop_config",
type=json.loads,
default=None,
help="Configuration of early stop.",
)
parser.add_argument(
"--load_choices",
type=str,
default="default",
help="The format of the model weights to load. default/new_loader.",
)
parser.add_argument(
"--ips",
type=str,
default=None,
help="The ips of multinode deployment.",
)
parser.add_argument(
"--lm_head_fp32",
action="store_true",
help="Flag to specify dtype of lm_head as FP32",
)
args = parser.parse_args()
return args
def initialize_fd_config(args, ranks: int = 1, local_rank: int = 0) -> FDConfig:
"""Initialize FDConfig from either RolloutModelConfig or argparse.Namespace
Args:
config: Configuration object containing all parameters (either RolloutModelConfig or argparse.Namespace)
Returns:
FDConfig: Initialized FastDeploy configuration object
"""
# RL rollout
if args.quantization is not None and isinstance(args.quantization, str):
args.quantization = parse_quantization(args.quantization)
paddle.set_default_dtype(args.dtype)
model_config = ModelConfig(vars(args))
device_config = DeviceConfig(vars(args))
decoding_config = DecodingConfig(vars(args))
speculative_config = SpeculativeConfig(args.speculative_config)
parallel_config = ParallelConfig(vars(args))
cache_config = CacheConfig(vars(args))
parallel_config.tensor_parallel_rank = local_rank % parallel_config.tensor_parallel_size
parallel_config.data_parallel_rank = local_rank // parallel_config.tensor_parallel_size
# config for EP
if parallel_config.expert_parallel_size > 1:
expert_parallel_rank = int(local_rank % parallel_config.expert_parallel_size)
if isinstance(model_config.moe_num_experts, list):
num_experts = model_config.moe_num_experts[0]
else:
num_experts = model_config.moe_num_experts
num_experts_per_rank = num_experts // parallel_config.expert_parallel_size
num_experts_start_offset = expert_parallel_rank * num_experts_per_rank
max_chips_per_node = 16 if current_platform.is_iluvatar() else 8
parallel_config.local_data_parallel_id = expert_parallel_rank % max_chips_per_node
parallel_config.expert_parallel_rank = expert_parallel_rank
parallel_config.num_experts_per_rank = num_experts_per_rank
parallel_config.num_experts_start_offset = num_experts_start_offset
parallel_config.engine_worker_queue_port = parallel_config.engine_worker_queue_port[
parallel_config.local_data_parallel_id
]
parallel_config.set_tp_group()
load_config = LoadConfig(vars(args))
graph_opt_config = GraphOptimizationConfig(args.graph_optimization_config)
moba_attention_config = MobaAttentionConfig(args.moba_attention_config)
early_stop_config = EarlyStopConfig(args.early_stop_config)
# Note(tangbinhan): used for load_checkpoint
model_config.pretrained_config.tensor_parallel_rank = parallel_config.tensor_parallel_rank
model_config.pretrained_config.tensor_parallel_degree = parallel_config.tensor_parallel_size
model_config.pretrained_config.is_mtp = False
model_config.pretrained_config.head_dim = model_config.head_dim
logger.info(f"parallel_config.use_ep {parallel_config.use_ep}")
logger.info(f"parallel_config.tensor_parallel_size {parallel_config.tensor_parallel_size}")
logger.info(f"parallel_config.tensor_parallel_rank {parallel_config.tensor_parallel_rank}")
logger.info(f"parallel_config.engine_worker_queue_port {parallel_config.engine_worker_queue_port}")
if getattr(model_config, "num_hidden_layers", None) is None:
raise ValueError("num_hidden_layers is None")
quant_config = parse_quant_config(
args,
model_config,
is_ernie=ErnieArchitectures.contains_ernie_arch(model_config.architectures),
is_v1_loader=load_config.load_choices == "default_v1",
)
# Log quantization info
logger.info("===========quantization_config==============")
if quant_config is not None:
if model_config.is_quantized:
logger.info("Model Status: Offline Quantized (pre-quantized weights loaded)")
else:
logger.info("Model Status: Original (will apply online quantization)")
logger.info(f"{model_config.quantization_config}")
else:
logger.info("No quantization config found and use original weight and act dtype.")
logger.info(f"- Dynamic load weight: {load_config.dynamic_load_weight}")
logger.info(f"- Load strategy: {load_config.load_strategy}")
if (
args.speculative_config is not None
and ("method" in args.speculative_config)
and (args.speculative_config["method"] is not None)
):
logger.info("Set ENABLE_V1_KVCACHE_SCHEDULER to 0 due to not support speculative decoding now.")
envs.ENABLE_V1_KVCACHE_SCHEDULER = 0
if args.splitwise_role != "mixed":
logger.info(f"Set ENABLE_V1_KVCACHE_SCHEDULER to 0 due to not supported {args.splitwise_role} now.")
envs.ENABLE_V1_KVCACHE_SCHEDULER = 0
if not current_platform.is_cuda():
logger.info("Set ENABLE_V1_KVCACHE_SCHEDULER to 0 due to not supported.")
envs.ENABLE_V1_KVCACHE_SCHEDULER = 0
if parallel_config.guided_decoding_backend != "off":
logger.info("Set ENABLE_V1_KVCACHE_SCHEDULER to 0 due to not supported guided_decoding.")
envs.ENABLE_V1_KVCACHE_SCHEDULER = 0
fd_config = FDConfig(
model_config=model_config,
parallel_config=parallel_config,
speculative_config=speculative_config,
device_config=device_config,
load_config=load_config,
decoding_config=decoding_config,
quant_config=quant_config,
graph_opt_config=graph_opt_config,
early_stop_config=early_stop_config,
cache_config=cache_config,
engine_worker_queue_port=args.engine_worker_queue_port,
ips=args.ips,
moba_attention_config=moba_attention_config,
)
update_fd_config_for_mm(fd_config)
return fd_config
def run_worker_proc() -> None:
"""
start worker process
"""
# Get args form Engine
args = parse_args()
ranks, local_rank = init_distributed_environment()
# Get fd_config
fd_config = initialize_fd_config(args, ranks, local_rank)
# Create worker process
if current_platform.is_iluvatar():
from fastdeploy.worker.iluvatar_worker import IluvatarPaddleDisWorkerProc
worker_proc = IluvatarPaddleDisWorkerProc(fd_config, ranks, local_rank)
else:
worker_proc = PaddleDisWorkerProc(fd_config, ranks, local_rank)
# Initialize device and create model runner
worker_proc.init_device()
# Load model
worker_proc.load_model()
# Initialize KV Cache
worker_proc.initialize_kv_cache()
# Trigger CUDAGraph capture
worker_proc.worker.graph_optimize_and_warm_up_model()
# Initialize health status
worker_proc.init_health_status()
worker_proc.start_task_queue_service()
# Start event loop
worker_proc.event_loop_normal()
if __name__ == "__main__":
run_worker_proc()