Files
FastDeploy/fastdeploy/model_executor/utils.py
bukejiyu 29ed617f0f [v1 loader]qwen Offline fp8 (#4036)
* support offline fp8

* update ut

* update ut

* update ut

* fix

* update

* update
2025-09-15 13:44:11 +08:00

264 lines
9.5 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import re
from contextlib import contextmanager
from typing import Any, Optional, Union
import paddle
from fastdeploy.config import FDConfig
from fastdeploy.model_executor.layers.utils import get_tensor
class BitMaskTracker:
def __init__(self, length: int):
"""
Track filling status along a single dimension using a bitmask.
Args:
length (int): Number of positions to track (e.g., columns or rows)
"""
self.length = length
self.mask = 0
def mark(self, start: int, end: int):
"""
Mark the range [start, end) as filled.
Args:
start (int): Start index (inclusive)
end (int): End index (exclusive)
"""
if start < 0 or end > self.length or start >= end:
raise ValueError("Invalid mark range")
block = ((1 << (end - start)) - 1) << start
self.mask |= block
def is_full(self) -> bool:
"""Return True if all positions are filled."""
return self.mask == (1 << self.length) - 1
class TensorTracker:
def __init__(self, shape: tuple, output_dim: int):
"""
Unified tracker for 2D or 3D tensors.
Args:
shape (tuple): Tensor shape
output_dim (bool):
- 2D: True = track columns (dim=1), False = track rows (dim=0)
- 3D: True = track columns (dim=2), False = track rows (dim=1)
"""
self.shape = shape
self.output_dim = output_dim
if len(shape) == 2:
self.track_dim = 1 if output_dim else 0
self.trackers = [BitMaskTracker(shape[self.track_dim])]
elif len(shape) == 3:
batch = shape[0]
self.track_dim = 2 if output_dim else 1
self.trackers = [BitMaskTracker(shape[self.track_dim]) for _ in range(batch)]
else:
raise ValueError("Only 2D or 3D tensors supported")
def mark(self, start: int = 0, end: int = None, batch_id: int = None):
"""
Mark a slice of the tensor as filled.
Args:
batch_id (int, optional): Batch index for 3D tensors
start (int): Start index along tracked dimension
end (int): End index along tracked dimension
"""
if end is None:
end = self.shape[self.track_dim]
if len(self.shape) == 2:
self.trackers[0].mark(start, end)
else:
if batch_id is None:
raise ValueError("batch_id must be provided for 3D tensor")
self.trackers[batch_id].mark(start, end)
def is_fully_copied(self) -> bool:
"""Return True if the tensor is fully filled along tracked dimension(s)."""
return all(tr.is_full() for tr in self.trackers)
def set_weight_attrs(param, param_attr_map: Optional[dict[str, Any]]):
if param_attr_map is None:
return
for key, value in param_attr_map.items():
setattr(param, key, value)
def slice_fn(weight_or_paramter, output_dim, start, end, step=1):
if hasattr(weight_or_paramter, "get_shape"):
shape = weight_or_paramter.get_shape()
else:
shape = weight_or_paramter.shape
if len(shape) == 1:
weight_or_paramter = weight_or_paramter[start:end]
elif output_dim:
weight_or_paramter = weight_or_paramter[..., start:end]
else:
weight_or_paramter = weight_or_paramter[start:end, ...]
return weight_or_paramter
def process_weights_after_loading(sublayers_dict: dict):
"""
process_weights_after_loading: e.g., handle extracted weights (quantization, reshaping, etc.)
"""
def fn(model_sublayer_name: str, param=None):
from fastdeploy.model_executor.layers.linear import KVBatchLinear
if model_sublayer_name not in sublayers_dict:
return
model_sublayer = sublayers_dict[model_sublayer_name]
if isinstance(model_sublayer, KVBatchLinear):
model_sublayer.process_weights_after_loading()
if hasattr(model_sublayer, "quant_method"):
quant_method = getattr(model_sublayer, "quant_method", None)
if not hasattr(quant_method, "process_weights_after_loading"):
return
if param is not None and hasattr(param, "tensor_track") and not param.tensor_track.is_fully_copied():
return
quant_method.process_weights_after_loading(model_sublayer)
return fn
def free_tensor(tensor):
if hasattr(tensor, "tensor_track"):
tensor.tensor_track = None
tensor.value().get_tensor()._clear()
del tensor
def default_weight_loader(fd_config: FDConfig) -> None:
"""Default weight loader"""
def fn(param, loaded_weight, shard_id: Optional[Union[int, str]] = None):
"""fn"""
output_dim = getattr(param, "output_dim", None)
weight_need_transpose = getattr(param, "weight_need_transpose", False)
if weight_need_transpose:
loaded_weight = get_tensor(loaded_weight)
loaded_weight = loaded_weight.transpose([1, 0])
# Tensor parallelism splits the weight along the output_dim
if output_dim is not None and fd_config.parallel_config.tensor_parallel_size > 1:
dim = -1 if output_dim else 0
if isinstance(loaded_weight, paddle.Tensor):
size = loaded_weight.shape[dim]
else:
size = loaded_weight.get_shape()[dim]
block_size = size // fd_config.parallel_config.tensor_parallel_size
shard_offset = fd_config.parallel_config.tensor_parallel_rank * block_size
shard_size = (fd_config.parallel_config.tensor_parallel_rank + 1) * block_size
loaded_weight = slice_fn(loaded_weight, output_dim, shard_offset, shard_size)
loaded_weight = get_tensor(loaded_weight)
# mlp.gate.weight is precision-sensitive, so we cast it to float32 for computation
if param.dtype != loaded_weight.dtype:
if loaded_weight.dtype == paddle.int8 and param.dtype == paddle.float8_e4m3fn:
loaded_weight = loaded_weight.view(param.dtype)
else:
loaded_weight = loaded_weight.cast(param.dtype)
if param.shape != loaded_weight.shape:
# for e_score_correction_bias
loaded_weight = loaded_weight.reshape(param.shape)
assert param.shape == loaded_weight.shape, (
f" Attempted to load weight ({loaded_weight.shape}) " f"into parameter ({param.shape})"
)
param.copy_(loaded_weight, False)
return fn
@contextmanager
def temporary_dtype(dtype: str):
"""Temporarily set Paddle default dtype"""
orig_dtype = paddle.get_default_dtype()
try:
if dtype is not None and dtype == "float32":
paddle.set_default_dtype(dtype)
yield
finally:
paddle.set_default_dtype(orig_dtype)
@contextmanager
def switch_config_context(config_obj, config_attr_name, value):
"""switch_config_context"""
origin_value = getattr(config_obj, config_attr_name)
setattr(config_obj, config_attr_name, value)
try:
yield
finally:
setattr(config_obj, config_attr_name, origin_value)
def rename_offline_ckpt_suffix_to_fd_suffix(
fd_config, ckpt_weight_suffix: str = "quant_weight", ckpt_scale_suffix="weight_scale"
):
"""
Create a function to rename checkpoint key suffixes for FastDeploy.
Replaces the original suffix (default "weight_scale") with the FD target
suffix (default "quant_weight"). Only the suffix is changed.
Args:
fd_config: FastDeploy configuration.
ckpt_weight_suffix: Original checkpoint key suffix.
ckpt_scale_suffix: Target FastDeploy key suffix.
Returns:
Callable: Function that renames checkpoint keys.
"""
fd_suffix_map = {} # noqa: F841
fp8_suffix_map = {
ckpt_weight_suffix: "weight",
ckpt_scale_suffix: "weight_scale_inv",
}
moe_quant_type = ""
dense_quant_type = ""
if fd_config.quant_config is None:
if fd_config.quant_config.name() == "mix_quant":
moe_quant_type = fd_config.quant_config.moe_quant_type
dense_quant_type = fd_config.quant_config.dense_quant_type
else:
moe_quant_type = fd_config.quant_config.name()
dense_quant_type = fd_config.quant_config.name()
def fn(loaded_weight_name, is_moe):
if fd_config.quant_config is None or fd_config.quant_config.is_checkpoint_bf16:
return loaded_weight_name
# Can be extended to other offline quantization suffixes if needed.
if (is_moe and moe_quant_type == "block_wise_fp8") or (not is_moe and dense_quant_type == "block_wise_fp8"):
fd_suffix_map = fp8_suffix_map
for ckpt_suffix, fd_suffix in fd_suffix_map.items():
if re.search(rf"{ckpt_suffix}$", loaded_weight_name):
loaded_weight_name = loaded_weight_name.replace(ckpt_suffix, fd_suffix)
return loaded_weight_name
return loaded_weight_name
return fn