mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00
495 lines
19 KiB
Python
495 lines
19 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import contextlib
|
|
import hashlib
|
|
import inspect
|
|
import json
|
|
import os
|
|
import pickle
|
|
import time
|
|
from functools import wraps
|
|
from pathlib import Path
|
|
|
|
import paddle
|
|
import paddle.distributed as dist
|
|
from fastsafetensors import SafeTensorsFileLoader, SingleGroup
|
|
from paddleformers.transformers import PretrainedModel
|
|
from paddleformers.transformers.model_utils import load_tp_checkpoint
|
|
from paddleformers.utils.log import logger
|
|
from paddleformers.utils.safetensors import fast_safe_open
|
|
from safetensors import safe_open
|
|
from tqdm import tqdm
|
|
|
|
from fastdeploy import envs
|
|
from fastdeploy.config import FDConfig
|
|
from fastdeploy.model_executor.layers.linear import KVBatchLinear
|
|
from fastdeploy.model_executor.models.tp_utils import (
|
|
check_tensor_parallel_prerequisites,
|
|
)
|
|
from fastdeploy.model_executor.utils import switch_config_context
|
|
from fastdeploy.platforms import current_platform
|
|
|
|
|
|
def pdparams_weight_iterator(paddle_file_list: list[str]):
|
|
for pdparams_file in tqdm(
|
|
paddle_file_list,
|
|
desc="Loading pdparams checkpoint shards",
|
|
):
|
|
state_dict = paddle.load(pdparams_file)
|
|
yield from state_dict.items()
|
|
del state_dict
|
|
|
|
|
|
def load_weights_form_cache(model, weights_iterator):
|
|
params_dict = dict(model.named_parameters())
|
|
for loaded_weight_name, loaded_weight in weights_iterator:
|
|
param = params_dict[loaded_weight_name]
|
|
param.copy_(loaded_weight, False)
|
|
if "embeddings" in loaded_weight_name and getattr(model, "tie_word_embeddings", False):
|
|
model.lm_head.load_state_dict({model.lm_head.weight_key: loaded_weight})
|
|
for _, model_sublayer in model.named_sublayers():
|
|
if isinstance(model_sublayer, KVBatchLinear):
|
|
model_sublayer.process_weights_after_loading()
|
|
|
|
|
|
def get_weight_iterator(model_path: str):
|
|
_, files_list, use_safetensors = get_all_weights_file(model_path)
|
|
if use_safetensors:
|
|
weights_iterator = fast_weights_iterator(files_list)
|
|
else:
|
|
weights_iterator = pdparams_weight_iterator(files_list)
|
|
return weights_iterator
|
|
|
|
|
|
def is_weight_cache_enabled(fd_config, weight_cache_path=".cache"):
|
|
weight_cache_context = contextlib.nullcontext()
|
|
weight_cache_dir = None
|
|
enable_cache = False
|
|
if envs.FD_ENABLE_MODEL_LOAD_CACHE:
|
|
model_weight_cache_path = os.path.join(fd_config.model_config.model, weight_cache_path)
|
|
# model_type + quantization + tp_size + ep_size
|
|
weight_cache_key = "_".join(
|
|
[
|
|
fd_config.model_config.model_type,
|
|
fd_config.quant_config.name(),
|
|
str(fd_config.parallel_config.tensor_parallel_size),
|
|
str(fd_config.parallel_config.expert_parallel_size),
|
|
]
|
|
)
|
|
# only support tp now
|
|
hash_key = hashlib.md5(pickle.dumps(weight_cache_key)).hexdigest()
|
|
weight_cache_dir = os.path.join(model_weight_cache_path, hash_key)
|
|
if os.path.exists(weight_cache_dir):
|
|
logger.info(
|
|
f"Loading will prioritize cached models. Users are responsible for ensuring the saved model is correct. If any error occurs, deleting the cache at {weight_cache_dir} may resolve it."
|
|
)
|
|
enable_cache = True
|
|
weight_cache_context = switch_config_context(fd_config.quant_config, "is_quantized", True)
|
|
|
|
return enable_cache, weight_cache_dir, weight_cache_context
|
|
|
|
|
|
def save_model(model_arg_name="model", config_arg_name="fd_config"):
|
|
@measure_time("Model saving")
|
|
def _save_model(model_dict, weight_cache_dir):
|
|
# Note: ProcessGroupNCCL do not support deepcopy protocol, we made modifications here.
|
|
paddle.distributed.communication.group.Group.__deepcopy__ = lambda self, _: self
|
|
paddle.distributed.communication.group.Group.to_json = lambda self: repr(self)
|
|
paddle.save(model_dict, weight_cache_dir)
|
|
|
|
def decorator(func):
|
|
@wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
sig = inspect.signature(func)
|
|
bound_args = sig.bind(*args, **kwargs)
|
|
bound_args.apply_defaults()
|
|
fd_config = bound_args.arguments.get(config_arg_name, None)
|
|
model = bound_args.arguments.get(model_arg_name, None)
|
|
enable_cache, weight_cache_dir, _ = is_weight_cache_enabled(fd_config)
|
|
assert fd_config is not None, "fd_config cannot be None"
|
|
assert model is not None, "model cannot be None"
|
|
if enable_cache:
|
|
tp_weight_cache_dir = os.path.join(
|
|
weight_cache_dir, f"rank{str(fd_config.parallel_config.tensor_parallel_rank)}"
|
|
)
|
|
context = switch_config_context(fd_config.model_config, "model", tp_weight_cache_dir)
|
|
else:
|
|
context = contextlib.nullcontext()
|
|
|
|
with context:
|
|
result = func(*args, **kwargs)
|
|
if (
|
|
envs.FD_ENABLE_MODEL_LOAD_CACHE
|
|
and weight_cache_dir is not None
|
|
and not os.path.exists(weight_cache_dir)
|
|
):
|
|
assert fd_config.quant_config is not None and getattr(
|
|
fd_config.quant_config, "is_checkpoint_bf16", False
|
|
), "Save cache only for dynamic quantization"
|
|
tp_weight_cache_dir = os.path.join(
|
|
weight_cache_dir, f"rank{str(fd_config.parallel_config.tensor_parallel_rank)}"
|
|
)
|
|
logger.info(f"Saving model to {tp_weight_cache_dir}")
|
|
os.makedirs(
|
|
tp_weight_cache_dir,
|
|
exist_ok=True,
|
|
)
|
|
_save_model(model.state_dict(), os.path.join(tp_weight_cache_dir, "cache.pdparams"))
|
|
else:
|
|
reason = "weights already cached" if envs.FD_ENABLE_MODEL_LOAD_CACHE else "cache disabled"
|
|
logger.info(f"Skip saving ,{reason}")
|
|
return result
|
|
|
|
return wrapper
|
|
|
|
return decorator
|
|
|
|
|
|
def measure_time(prefix: str = "Model loading"):
|
|
def decorator(func):
|
|
@wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
time_before = time.time()
|
|
result = func(*args, **kwargs)
|
|
time_after = time.time()
|
|
logger.info(f"{prefix} took {time_after - time_before:.3f} seconds")
|
|
return result
|
|
|
|
return wrapper
|
|
|
|
return decorator
|
|
|
|
|
|
def load_reordered_experts(model_path: str, key_name: str):
|
|
from safetensors import safe_open
|
|
|
|
with open(os.path.join(model_path, "model.safetensors.index.json"), "r") as f:
|
|
weight_list = json.load(f)["weight_map"]
|
|
safetensor_path = os.path.join(model_path, weight_list[key_name])
|
|
with safe_open(safetensor_path, framework="np", device="cpu") as f:
|
|
if key_name in f.keys():
|
|
weight = f.get_tensor(key_name)
|
|
weight = paddle.Tensor(weight, zero_copy=True)
|
|
weight = weight._copy_to(paddle.framework._current_expected_place(), False)
|
|
return weight
|
|
|
|
|
|
def load_ep_checkpoint(model_path: str, fd_config: FDConfig, return_numpy: bool = False):
|
|
"""
|
|
load ep checkpoint
|
|
"""
|
|
with open(os.path.join(model_path, "model.safetensors.index.json"), "r") as f:
|
|
weight_list = json.load(f)["weight_map"]
|
|
filtered_map = {k: v for k, v in weight_list.items() if ".experts." not in k}
|
|
num_local_ffn_keys = []
|
|
|
|
from itertools import chain
|
|
|
|
def get_expert_ranges(fd_config):
|
|
"""
|
|
Generate expert index ranges based on configuration parameters
|
|
|
|
This function is primarily used in Mixture-of-Experts (MoE) models to generate
|
|
expert index ranges according to configuration parameters. When moe_num_experts
|
|
is a list in the fd_config, it returns a chained combination of two ranges, otherwise
|
|
returns a single range.
|
|
|
|
Args:
|
|
fd_config: FastDeploy Configuration object
|
|
|
|
Returns:
|
|
If moe_num_experts is a list:
|
|
Returns a chained combination (chain object) of two ranges:
|
|
1. Base range: [num_experts_start_offset, num_experts_start_offset + num_experts_per_rank)
|
|
2. Offset range: [base_range.start + moe_num_experts[0], base_range.stop + moe_num_experts[0])
|
|
Else:
|
|
Returns single range: [num_experts_start_offset, num_experts_start_offset + num_experts_per_rank)
|
|
"""
|
|
base_range = range(
|
|
fd_config.parallel_config.num_experts_start_offset,
|
|
fd_config.parallel_config.num_experts_start_offset + fd_config.parallel_config.num_experts_per_rank,
|
|
)
|
|
if isinstance(fd_config.model_config.moe_num_experts, list):
|
|
return chain(
|
|
base_range,
|
|
range(
|
|
base_range.start + fd_config.model_config.moe_num_experts[0],
|
|
base_range.stop + fd_config.model_config.moe_num_experts[0],
|
|
),
|
|
)
|
|
return base_range
|
|
|
|
for i in range(fd_config.model_config.moe_layer_start_index, fd_config.model_config.num_hidden_layers):
|
|
for j in get_expert_ranges(fd_config):
|
|
up_gate_proj_key = f"ernie.layers.{i}.mlp.experts.{j}.up_gate_proj.weight"
|
|
down_proj_key = f"ernie.layers.{i}.mlp.experts.{j}.down_proj.weight"
|
|
|
|
up_gate_proj_quant_key = f"ernie.layers.{i}.mlp.experts.{j}.up_gate_proj.quant_weight"
|
|
down_proj_quant_key = f"ernie.layers.{i}.mlp.experts.{j}.down_proj.quant_weight"
|
|
|
|
up_gate_proj_scale_key = f"ernie.layers.{i}.mlp.experts.{j}.up_gate_proj.weight_scale"
|
|
down_proj_scale_key = f"ernie.layers.{i}.mlp.experts.{j}.down_proj.weight_scale"
|
|
|
|
down_proj_in_scale_key = f"ernie.layers.{i}.mlp.experts.{j}.down_proj.activation_scale"
|
|
num_local_ffn_keys.append(up_gate_proj_key)
|
|
num_local_ffn_keys.append(down_proj_key)
|
|
num_local_ffn_keys.append(up_gate_proj_quant_key)
|
|
num_local_ffn_keys.append(down_proj_quant_key)
|
|
num_local_ffn_keys.append(up_gate_proj_scale_key)
|
|
num_local_ffn_keys.append(down_proj_scale_key)
|
|
num_local_ffn_keys.append(down_proj_in_scale_key)
|
|
|
|
# for EP w4a8, we need all expert's activation_scale for up_gate_proj
|
|
num_experts = fd_config.model_config.moe_num_experts
|
|
if isinstance(num_experts, list):
|
|
num_experts = num_experts[0]
|
|
|
|
for j in range(num_experts):
|
|
up_gate_proj_in_scale_key = f"ernie.layers.{i}.mlp.experts.{j}.up_gate_proj.activation_scale"
|
|
num_local_ffn_keys.append(up_gate_proj_in_scale_key)
|
|
|
|
for k in num_local_ffn_keys:
|
|
if k in weight_list:
|
|
filtered_map[k] = weight_list[k]
|
|
|
|
state_dict = {}
|
|
# Get all safetensor file paths that need to be opened
|
|
safetensor_paths = set(filtered_map.values())
|
|
|
|
# Open each safetensor file sequentially with progress bar
|
|
for safetensor_path in tqdm(safetensor_paths, desc="Loading safetensor files", unit="file"):
|
|
with safe_open(
|
|
os.path.join(model_path, safetensor_path),
|
|
framework="np",
|
|
device="cpu",
|
|
) as f:
|
|
# Check if this file contains keys from filtered_map
|
|
for k in filtered_map:
|
|
if filtered_map[k] == safetensor_path and k in f.keys():
|
|
weight = f.get_tensor(k)
|
|
if not return_numpy:
|
|
weight = paddle.Tensor(weight, zero_copy=True)
|
|
weight = weight._copy_to(paddle.framework._current_expected_place(), False)
|
|
state_dict[k] = weight
|
|
return state_dict
|
|
|
|
|
|
def safetensors_weights_iterator(safe_tensor_list: list[str]):
|
|
"""
|
|
safetensors_weights_iterator
|
|
"""
|
|
for st_file in tqdm(
|
|
safe_tensor_list,
|
|
desc="Loading safetensors checkpoint shards",
|
|
):
|
|
with safe_open(st_file, framework="np") as f:
|
|
for name in f.keys():
|
|
param = f.get_tensor(name)
|
|
yield name, param
|
|
|
|
|
|
def fast_weights_iterator(safe_tensor_list: list[str]):
|
|
"""
|
|
paddleformers' iterator for safetensors
|
|
"""
|
|
for st_file in tqdm(
|
|
safe_tensor_list,
|
|
desc="Loading safetensors checkpoint shards",
|
|
):
|
|
with fast_safe_open(st_file, framework="np") as f:
|
|
for name in f.keys():
|
|
param_slice = f.get_slice(name)
|
|
yield name, param_slice
|
|
|
|
|
|
def fastsafetensors_weights_iterator(
|
|
safetensor_list: list[str],
|
|
):
|
|
"""
|
|
Return an iterator over tensors on GPU from a given safetensor_list.
|
|
"""
|
|
world_size = dist.get_world_size()
|
|
if world_size > 1:
|
|
pg = dist.get_group()
|
|
device = f"gpu:{pg.rank}" if paddle.is_compiled_with_cuda() else "cpu"
|
|
else:
|
|
pg = SingleGroup()
|
|
device = f"gpu:{pg.rank()}" if paddle.is_compiled_with_cuda() else "cpu"
|
|
|
|
safetensor_files_sub_lists = [
|
|
safetensor_list[i : i + world_size] for i in range(0, len(safetensor_list), world_size)
|
|
]
|
|
|
|
for st_file in tqdm(
|
|
safetensor_files_sub_lists,
|
|
desc="Loading fastsafetensors checkpoint shards",
|
|
):
|
|
loader = SafeTensorsFileLoader(pg, device, nogds=True, debug_log=False, framework="paddle")
|
|
rank_file_map = {i: [f] for i, f in enumerate(st_file)}
|
|
loader.add_filenames(rank_file_map)
|
|
try:
|
|
fb = loader.copy_files_to_device()
|
|
try:
|
|
keys = list(fb.key_to_rank_lidx.keys())
|
|
for k in keys:
|
|
t = fb.get_tensor(k)
|
|
yield k, t
|
|
finally:
|
|
fb.close()
|
|
finally:
|
|
loader.close()
|
|
|
|
|
|
def load_pre_sharded_checkpoint(model_path: str, local_rank: int, use_fastsafetensor: bool = False):
|
|
"""
|
|
load_pre_sharded_checkpoint
|
|
"""
|
|
|
|
state_dict = {}
|
|
_, safetensor_files, _ = get_all_weights_file(os.path.join(model_path, f"rank{local_rank}"))
|
|
weights_iterator = safetensors_weights_iterator(safetensor_files)
|
|
for name, weight in weights_iterator:
|
|
state_dict[name] = weight
|
|
return state_dict
|
|
|
|
|
|
def get_all_weights_file(model_path: str):
|
|
"""
|
|
get_all_safetensors
|
|
"""
|
|
model_path = Path(model_path)
|
|
use_safetensors = True
|
|
if any(model_path.glob("*.pdparams")):
|
|
key_name_list = []
|
|
files_list = [str(file) for file in model_path.glob("*.pdparams")]
|
|
use_safetensors = False
|
|
else:
|
|
safe_model_path = model_path / "model.safetensors"
|
|
if safe_model_path.exists():
|
|
files_list = [str(safe_model_path)]
|
|
with safe_open(safe_model_path, framework="np", device="cpu") as f:
|
|
key_name_list = f.keys()
|
|
return key_name_list, files_list, use_safetensors
|
|
else:
|
|
index_file = model_path / "model.safetensors.index.json"
|
|
with index_file.open("r") as f:
|
|
weight_map = json.load(f)["weight_map"]
|
|
weight_files_in_index = {str(model_path / weight_map[name]) for name in weight_map}
|
|
key_name_list = list(weight_map.keys())
|
|
files_list = sorted(weight_files_in_index)
|
|
return key_name_list, files_list, use_safetensors
|
|
|
|
|
|
def load_tp_checkpoint_v1(
|
|
model_path: str,
|
|
cls: PretrainedModel,
|
|
fd_config: FDConfig,
|
|
use_fastsafetensor: bool = True,
|
|
):
|
|
"""
|
|
load_tp_checkpoint_v1
|
|
"""
|
|
|
|
safetensor_keys, safetensor_files, _ = get_all_weights_file(model_path)
|
|
|
|
if use_fastsafetensor:
|
|
weights_iterator = fastsafetensors_weights_iterator(safetensor_files)
|
|
else:
|
|
weights_iterator = safetensors_weights_iterator(safetensor_files)
|
|
|
|
tensor_parallel_filtered_map = {}
|
|
check_tensor_parallel_prerequisites(
|
|
fd_config,
|
|
cls,
|
|
tensor_parallel_filtered_map,
|
|
safetensor_keys,
|
|
)
|
|
need_tp = True if tensor_parallel_filtered_map else False
|
|
state_dict = {}
|
|
for key, weight in weights_iterator:
|
|
paddle.device.synchronize()
|
|
if need_tp and key in tensor_parallel_filtered_map:
|
|
action = tensor_parallel_filtered_map.pop(key)
|
|
tensor = action(weight).clone()
|
|
else:
|
|
tensor = weight.clone()
|
|
state_dict[key] = tensor
|
|
weight.value().get_tensor()._clear()
|
|
return state_dict
|
|
|
|
|
|
def deal_state_dict(state_dict):
|
|
"""deal_state_dict"""
|
|
device = paddle.CUDAPinnedPlace()
|
|
for name, src in state_dict.items():
|
|
if src._is_initialized() and not isinstance(src.place, paddle.CUDAPinnedPlace):
|
|
dst = src._copy_to(device, True)
|
|
dst_tensor = dst.value().get_tensor()
|
|
src_tensor = src.value().get_tensor()
|
|
src_tensor._clear()
|
|
src_tensor._share_data_with(dst_tensor)
|
|
|
|
|
|
def load_composite_checkpoint(
|
|
model_path: str,
|
|
cls: PretrainedModel,
|
|
fd_config: FDConfig,
|
|
return_numpy=True,
|
|
):
|
|
"""
|
|
# This method supports loading model weights under three parallelism strategies:
|
|
# 1. Expert Parallel (EP)
|
|
# 2. Tensor Parallel (TP)
|
|
# 3. Pre-sharded (pre-split)
|
|
"""
|
|
# (TODO: remove in the future)
|
|
if (
|
|
fd_config.parallel_config.use_ep
|
|
and fd_config.speculative_config.model_type != "mtp"
|
|
and fd_config.parallel_config.tensor_parallel_size == 1
|
|
):
|
|
state_dict = load_ep_checkpoint(model_path, fd_config, return_numpy=True)
|
|
else:
|
|
rank_dirs = [
|
|
f for f in os.listdir(model_path) if f.startswith("rank") and os.path.isdir(os.path.join(model_path, f))
|
|
]
|
|
if len(rank_dirs) > 1:
|
|
if fd_config.parallel_config.tensor_parallel_size != len(rank_dirs):
|
|
raise ValueError(f"Your model only supports loading with tp{len(rank_dirs)}")
|
|
state_dict = load_pre_sharded_checkpoint(
|
|
model_path,
|
|
fd_config.parallel_config.tensor_parallel_rank,
|
|
use_fastsafetensor=False,
|
|
)
|
|
else:
|
|
if fd_config.load_config.use_fastsafetensor and (
|
|
current_platform.available() and current_platform.is_cuda()
|
|
):
|
|
state_dict = load_tp_checkpoint_v1(model_path, cls, fd_config, use_fastsafetensor=True)
|
|
deal_state_dict(state_dict)
|
|
else:
|
|
# NOTE: for very big model, cpu will be out of memory
|
|
state_dict = load_tp_checkpoint(
|
|
model_path,
|
|
cls,
|
|
fd_config.model_config.pretrained_config,
|
|
return_numpy=return_numpy,
|
|
)
|
|
if not state_dict:
|
|
raise ValueError("weight not found in state_dict !")
|
|
return state_dict
|