Files
FastDeploy/fastdeploy/model_executor/layers/quantization/wfp8afp8.py
bukejiyu 29ed617f0f [v1 loader]qwen Offline fp8 (#4036)
* support offline fp8

* update ut

* update ut

* update ut

* fix

* update

* update
2025-09-15 13:44:11 +08:00

196 lines
6.8 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import copy
from typing import Optional
import paddle
from fastdeploy.model_executor.layers.linear import (
MergedColumnParallelLinear,
QKVParallelLinear,
)
from fastdeploy.model_executor.layers.quantization.ops import (
cutlass_scaled_mm,
scaled_fp8_quant,
)
from fastdeploy.model_executor.layers.quantization.quant_base import (
QuantConfigBase,
QuantMethodBase,
)
from fastdeploy.model_executor.utils import TensorTracker, set_weight_attrs
class WFP8AFP8Config(QuantConfigBase):
"""
Quantization config for weight and activation with FP8.
"""
def __init__(
self,
activation_scheme: str = "dynamic",
weight_block_size: list[int] = [-1, 1],
is_checkpoint_bf16: bool = False,
) -> None:
super().__init__()
self.quant_max_bound = 448
self.quant_min_bound = -448
self.quant_round_type = 1
self.activation_scheme = activation_scheme
self.weight_block_size = weight_block_size
self.is_checkpoint_bf16 = is_checkpoint_bf16
def name(self) -> str:
""" """
return "wfp8afp8"
@classmethod
def from_config(cls, config: dict) -> "WFP8AFP8Config":
""" """
is_checkpoint_bf16 = not config.get("is_quantized", False)
return cls(is_checkpoint_bf16=is_checkpoint_bf16)
def get_quant_method(self, layer) -> Optional[QuantMethodBase]:
""" """
return WFP8AFP8LinearMethod(self)
class WFP8AFP8LinearMethod(QuantMethodBase):
"""
Weight and activation quantization method for linear layer with FP8
"""
def __init__(
self,
quant_config: WFP8AFP8Config,
) -> None:
super().__init__()
self.quant_config = quant_config
self.use_per_token_if_dynamic = True
def create_weights(self, layer, **extra_weight_attrs):
""" """
weight_shape = layer.weight_shape
weight_block_size = self.quant_config.weight_block_size
assert len(weight_shape) == 2 and len(weight_block_size) == 2
scale_shape = copy.deepcopy(weight_shape)
for i in range(len(weight_shape)):
scale_shape[i] = (
(weight_shape[i] + weight_block_size[i] - 1) // weight_block_size[i] if weight_block_size[i] > 0 else 1
)
scale_shape = scale_shape[::-1]
if self.quant_config.is_checkpoint_bf16 and layer.fd_config.load_config.load_choices == "default_v1":
layer.weight = layer.create_parameter(
shape=weight_shape,
dtype=layer.weight_dtype,
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
extra_weight_attrs["weight_need_transpose"] = extra_weight_attrs.get("model_format") == "torch"
quant_attrs = extra_weight_attrs
if isinstance(layer, MergedColumnParallelLinear) or isinstance(layer, QKVParallelLinear):
quant_attrs = {
**extra_weight_attrs,
"tensor_track": TensorTracker(
shape=layer.weight_shape, output_dim=extra_weight_attrs.get("output_dim")
),
}
set_weight_attrs(
layer.weight,
quant_attrs,
)
else:
layer.weight_shape.reverse()
layer.weight_dtype = "float8_e4m3fn"
# TODO(YuanRisheng): set weight logic should be moved to process_loaded_weights func
self.skip_quant = False
layer.create_parameter(
shape=layer.weight_shape,
dtype=layer.weight_dtype,
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
layer.weight_scale = layer.create_parameter(
shape=scale_shape,
dtype="float32",
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
def process_weights_after_loading(self, layer) -> None:
if not self.quant_config.is_checkpoint_bf16:
return
weight_tensor = layer.weight.transpose([1, 0]).contiguous()
assert self.quant_config.weight_block_size == [-1, 1]
qweight, weight_scale = scaled_fp8_quant(
weight_tensor,
use_per_token_if_dynamic=True,
)
if hasattr(layer.weight, "tensor_track"):
layer.weight.tensor_track = None
layer.weight.value().get_tensor()._clear()
del layer.weight
layer.weight = layer.create_parameter(
shape=qweight.shape,
dtype="float8_e4m3fn",
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
layer.weight_scale = layer.create_parameter(
shape=weight_scale.shape,
dtype="float32",
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
layer.weight.copy_(qweight, False)
layer.weight_scale.copy_(weight_scale, False)
def process_loaded_weights(self, layer, weights) -> None:
""" """
if self.skip_quant:
weight_tensor = weights.cast(layer._dtype)
layer.weight.set_value(weight_tensor)
return
if weights.dtype != paddle.float8_e4m3fn:
self.use_per_token_if_dynamic = True
weight_tensor = weights.transpose([1, 0]).contiguous()
qweight, weight_scale = scaled_fp8_quant(
weight_tensor,
use_per_token_if_dynamic=False,
)
layer.weight.copy_(qweight, False)
layer.weight_scale.set_value(weight_scale)
def apply(self, layer, x):
""" """
if self.use_per_token_if_dynamic:
out_type = x.dtype
a_q, a_scales = scaled_fp8_quant(x, use_per_token_if_dynamic=self.use_per_token_if_dynamic)
linear_out = cutlass_scaled_mm(
a_q,
layer.weight,
a_scales,
layer.weight_scale,
out_type,
layer.bias,
)
else:
raise NotImplementedError
return linear_out