Files
FastDeploy/fastdeploy/model_executor/layers/quantization/__init__.py
bukejiyu 29ed617f0f [v1 loader]qwen Offline fp8 (#4036)
* support offline fp8

* update ut

* update ut

* update ut

* fix

* update

* update
2025-09-15 13:44:11 +08:00

137 lines
5.1 KiB
Python

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
quantization module
"""
from typing import Dict, List, Type
from .quant_base import QuantConfigBase
QUANTIZATION_METHODS: List[str] = [
"wint2",
"wint4",
"wint8",
"weight_only",
"block_wise_fp8",
"w4afp8",
"w8a8",
"w4a8",
"wfp8afp8",
"mix_quant",
"tensor_wise_fp8",
"kvcache",
]
def parse_quant_config(args, model_config, is_ernie, is_v1_loader):
# 1.model_config.is_quantized
# TODO(bukejiyu) model_config.is_quantized is v0 only need to be removed in future
if model_config.model_format == "torch":
quantization_config = model_config.quantization_config
if quantization_config is not None:
model_config.is_quantized = True
else:
quantization_config = model_config.quantization_config
if not model_config.is_quantized:
if quantization_config is not None:
if "is_quantized" in quantization_config:
model_config.is_quantized = quantization_config["is_quantized"]
elif "kv_cache_quant_type" not in quantization_config:
model_config.is_quantized = True
if quantization_config is not None and quantization_config.get("quantization", None) is None:
raise ValueError(
"quantization_config should have a key named 'quantization' for specify quant config."
)
quant_config_name = None
if quantization_config is not None:
quant_config_name = _get_offline_quant_config_name(
quantization_config, model_config.model_format == "torch", is_v1_loader
)
elif args.quantization is not None:
quantization_config = {}
try:
quantization_config.update(args.quantization)
quant_config_name = quantization_config["quantization"]
except:
quant_config_name = args.quantization["quantization"]
quantization_config["quantization"] = quant_config_name
# Special handling for Ernie models
if quant_config_name == "wint4" and is_ernie:
quantization_config["dense_quant_type"] = "wint8"
quantization_config["moe_quant_type"] = "wint4"
quantization_config["quantization"] = "mix_quant"
quant_config_name = "mix_quant"
else:
quant_config_name = None
if quant_config_name is None:
quant_config = None
else:
if not quantization_config.get("is_quantized"):
quantization_config["is_quantized"] = model_config.is_quantized
quant_cls = get_quantization_config(quant_config_name)
quant_config = quant_cls.from_config(quantization_config)
return quant_config
def _get_offline_quant_config_name(quantization_config, is_torch_weight, is_v1_loader):
if is_torch_weight:
# only support block_wise_fp8 now
quant_method = quantization_config.get("quant_method")
has_block_size = "weight_block_size" in quantization_config
if quant_method == "fp8" and has_block_size:
quant_config_name = "block_wise_fp8"
else:
raise ValueError("Torch weight offline quantization only supports block-wise FP8.")
else:
quant_config_name = quantization_config["quantization"]
return quant_config_name
def get_quantization_config(quantization: str) -> Type[QuantConfigBase]:
"""
Get the quantization config class by the quantization name.
"""
if quantization not in QUANTIZATION_METHODS:
raise ValueError(f"Invalid quantization method: {quantization}")
from .block_wise_fp8 import BlockWiseFP8Config
from .kv_cache import KvCacheQuantConfig
from .mix_quant import MixQuantConfig
from .tensor_wise_fp8 import TensorWiseFP8Config
from .w4a8 import W4A8Config
from .w4afp8 import W4AFP8Config
from .w8a8 import W8A8Config
from .weight_only import WeightOnlyConfig, WINT4Config, WINT8Config
from .wfp8afp8 import WFP8AFP8Config
from .wint2 import WINT2Config
method_to_config: Dict[str, Type[QuantConfigBase]] = {
"wint2": WINT2Config,
"wint4": WINT4Config,
"wint8": WINT8Config,
"weight_only": WeightOnlyConfig,
"block_wise_fp8": BlockWiseFP8Config,
"w4afp8": W4AFP8Config,
"w8a8": W8A8Config,
"w4a8": W4A8Config,
"wfp8afp8": WFP8AFP8Config,
"tensor_wise_fp8": TensorWiseFP8Config,
"kvcache": KvCacheQuantConfig,
"mix_quant": MixQuantConfig,
}
return method_to_config[quantization]