mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00
155 lines
5.6 KiB
Python
155 lines
5.6 KiB
Python
"""
|
|
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
from typing import Dict, Optional
|
|
|
|
import numpy as np
|
|
import paddle
|
|
from paddle import nn
|
|
from paddle.distributed import fleet
|
|
|
|
from fastdeploy.config import FDConfig
|
|
from fastdeploy.model_executor.utils import (
|
|
default_weight_loader,
|
|
set_weight_attrs,
|
|
temporary_dtype,
|
|
)
|
|
|
|
from .utils import get_tensor
|
|
|
|
|
|
class ParallelLMHead(nn.Layer):
|
|
"""
|
|
"Parallelized LM head.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
fd_config: FDConfig,
|
|
num_embeddings: int,
|
|
embedding_dim: int,
|
|
prefix: str = "",
|
|
with_bias: bool = False,
|
|
dtype: str = None,
|
|
) -> None:
|
|
"""
|
|
Parallelized LMhead.
|
|
|
|
Args:
|
|
fd_config (FDConfig): Arguments related to inference, containing
|
|
attributes such as weight_dtype, act_dtype, mp_size, hidden_size, head_dim,
|
|
num_attention_heads, and ffn_hidden_size.
|
|
num_embeddings (int): vocabulary size.
|
|
embedding_dim (int): size of hidden state.
|
|
prefix (str): The name of current layer. Defaults to "".
|
|
with_bias (bool): whether to have bias. Default: False.
|
|
dtype (str): The dtype of weight. Default: None.
|
|
"""
|
|
super(ParallelLMHead, self).__init__()
|
|
self.weight_key: str = prefix + ".weight"
|
|
if with_bias:
|
|
self.bias_key: Optional[str] = prefix + ".bias"
|
|
else:
|
|
self.bias_key: Optional[str] = None
|
|
self.tp_group = fd_config.parallel_config.tp_group
|
|
self.column_cut = True
|
|
self.nranks = fd_config.parallel_config.tensor_parallel_size
|
|
self.fd_config = fd_config
|
|
|
|
ColumnParallelLinear = fleet.meta_parallel.ColumnParallelLinear
|
|
RowParallelLinear = fleet.meta_parallel.RowParallelLinear
|
|
self.dtype = "float32" if fd_config.model_config.lm_head_fp32 else dtype
|
|
|
|
self.tie_word_embeddings: bool = fd_config.model_config.tie_word_embeddings
|
|
|
|
with temporary_dtype(self.dtype):
|
|
if self.column_cut:
|
|
need_gather = True
|
|
self.linear = ColumnParallelLinear(
|
|
embedding_dim,
|
|
num_embeddings,
|
|
mp_group=self.tp_group,
|
|
weight_attr=None,
|
|
has_bias=True if self.bias_key is not None else False,
|
|
gather_output=need_gather,
|
|
fuse_matmul_bias=False,
|
|
)
|
|
set_weight_attrs(
|
|
self.linear.weight,
|
|
{
|
|
"weight_loader": default_weight_loader(self.fd_config),
|
|
"weight_need_transpose": self.fd_config.model_config.model_format == "torch",
|
|
},
|
|
)
|
|
if self.nranks > 1:
|
|
set_weight_attrs(self.linear.weight, {"output_dim": True})
|
|
else:
|
|
self.linear = RowParallelLinear(
|
|
embedding_dim,
|
|
num_embeddings,
|
|
mp_group=self.tp_group,
|
|
weight_attr=None,
|
|
has_bias=True if self.bias_key is not None else False,
|
|
input_is_parallel=False,
|
|
fuse_matmul_bias=False,
|
|
)
|
|
set_weight_attrs(
|
|
self.linear.weight,
|
|
{
|
|
"weight_loader": default_weight_loader(self.fd_config),
|
|
"weight_need_transpose": self.fd_config.model_config.model_format == "torch",
|
|
},
|
|
)
|
|
|
|
if self.nranks > 1:
|
|
set_weight_attrs(self.linear.weight, {"output_dim": False})
|
|
|
|
def load_state_dict(self, state_dict: Dict[str, paddle.Tensor | np.ndarray]):
|
|
"""
|
|
Load the checkpoint state dictionary into the layer.
|
|
|
|
Args:
|
|
state_dict (dict): A dictionary containing the checkpoint weights and biases.
|
|
"""
|
|
|
|
if self.tie_word_embeddings:
|
|
self.linear.weight.set_value(
|
|
get_tensor(state_dict.pop(self.weight_key)).astype(self.linear.weight.dtype).transpose([1, 0])
|
|
)
|
|
else:
|
|
weight_tensor = get_tensor(state_dict.pop(self.weight_key)).astype(self.linear.weight.dtype)
|
|
if self.linear.weight.shape != weight_tensor.shape:
|
|
weight_tensor = weight_tensor.transpose([1, 0])
|
|
self.linear.weight.set_value(weight_tensor)
|
|
|
|
if self.bias_key is not None:
|
|
bias = get_tensor(state_dict.pop(self.bias_key)).astype(self.linear.bias.dtype)
|
|
self.linear.bias.set_value(bias)
|
|
|
|
def forward(self, input: paddle.Tensor) -> paddle.Tensor:
|
|
"""
|
|
Defines the forward computation of the layer.
|
|
|
|
Args:
|
|
input (Tensor): The input tensor to the layer.
|
|
|
|
Returns:
|
|
Tensor: The output tensor after processing through the layer.
|
|
"""
|
|
logits = input.astype(self.linear.weight.dtype)
|
|
logits = self.linear(logits)
|
|
return logits
|