Files
FastDeploy/fastdeploy/backends/paddle/paddle_backend.h
huangjianhui 291db315c8 [Other]Fastdeploy supports set_model_buffer function for encrypted model (#930)
* Update keypointdetection result docs

* Update im.copy() to im in examples

* Update new Api, fastdeploy::vision::Visualize to fastdeploy::vision

* Update SwapBackgroundSegmentation && SwapBackgroundMatting to SwapBackground

* Update README_CN.md

* Update README_CN.md

* Support set_model_buffer function
2022-12-21 14:21:28 +08:00

153 lines
4.6 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <iostream>
#include <memory>
#include <string>
#include <vector>
#include "fastdeploy/backends/backend.h"
#ifdef ENABLE_PADDLE_FRONTEND
#include "paddle2onnx/converter.h"
#endif
#include "fastdeploy/utils/unique_ptr.h"
#include "paddle_inference_api.h" // NOLINT
#ifdef ENABLE_TRT_BACKEND
#include "fastdeploy/backends/tensorrt/trt_backend.h"
#endif
namespace fastdeploy {
struct IpuOption {
int ipu_device_num;
int ipu_micro_batch_size;
bool ipu_enable_pipelining;
int ipu_batches_per_step;
bool ipu_enable_fp16;
int ipu_replica_num;
float ipu_available_memory_proportion;
bool ipu_enable_half_partial;
};
struct PaddleBackendOption {
std::string model_file = ""; // Path of model file
std::string params_file = ""; // Path of parameters file, can be empty
std::string model_buffer_ = "";
std::string params_buffer_ = "";
size_t model_buffer_size_ = 0;
size_t params_buffer_size_ = 0;
bool model_from_memory_ = false;
#ifdef WITH_GPU
bool use_gpu = true;
#else
bool use_gpu = false;
#endif
bool enable_mkldnn = true;
bool enable_log_info = false;
bool enable_trt = false;
#ifdef ENABLE_TRT_BACKEND
TrtBackendOption trt_option;
bool collect_shape = false;
std::vector<std::string> trt_disabled_ops_{};
#endif
#ifdef WITH_IPU
bool use_ipu = true;
IpuOption ipu_option;
#else
bool use_ipu = false;
#endif
int mkldnn_cache_size = 1;
int cpu_thread_num = 8;
// initialize memory size(MB) for GPU
int gpu_mem_init_size = 100;
// gpu device id
int gpu_id = 0;
bool enable_pinned_memory = false;
void* external_stream_ = nullptr;
std::vector<std::string> delete_pass_names = {};
};
// convert FD device to paddle place type
paddle_infer::PlaceType ConvertFDDeviceToPlace(Device device);
// Share memory buffer with paddle_infer::Tensor from fastdeploy::FDTensor
void ShareTensorFromFDTensor(paddle_infer::Tensor* tensor, FDTensor& fd_tensor);
// convert paddle_infer::Tensor to fastdeploy::FDTensor
// if copy_to_fd is true, copy memory data to FDTensor
/// else share memory to FDTensor
void PaddleTensorToFDTensor(std::unique_ptr<paddle_infer::Tensor>& tensor,
FDTensor* fd_tensor, bool copy_to_fd);
// Convert data type from paddle inference to fastdeploy
FDDataType PaddleDataTypeToFD(const paddle_infer::DataType& dtype);
// Convert data type from paddle2onnx::PaddleReader to fastdeploy
FDDataType ReaderDataTypeToFD(int32_t dtype);
class PaddleBackend : public BaseBackend {
public:
PaddleBackend() {}
virtual ~PaddleBackend() = default;
void BuildOption(const PaddleBackendOption& option);
bool
InitFromPaddle(const std::string& model_file, const std::string& params_file,
const PaddleBackendOption& option = PaddleBackendOption());
bool Infer(std::vector<FDTensor>& inputs, std::vector<FDTensor>* outputs,
bool copy_to_fd = true) override;
int NumInputs() const override { return inputs_desc_.size(); }
int NumOutputs() const override { return outputs_desc_.size(); }
std::unique_ptr<BaseBackend> Clone(void* stream = nullptr,
int device_id = -1) override;
TensorInfo GetInputInfo(int index) override;
TensorInfo GetOutputInfo(int index) override;
std::vector<TensorInfo> GetInputInfos() override;
std::vector<TensorInfo> GetOutputInfos() override;
private:
#ifdef ENABLE_TRT_BACKEND
void
CollectShapeRun(paddle_infer::Predictor* predictor,
const std::map<std::string, std::vector<int>>& shape) const;
void GetDynamicShapeFromOption(
const PaddleBackendOption& option,
std::map<std::string, std::vector<int>>* max_shape,
std::map<std::string, std::vector<int>>* min_shape,
std::map<std::string, std::vector<int>>* opt_shape) const;
void SetTRTDynamicShapeToConfig(const PaddleBackendOption& option);
#endif
PaddleBackendOption option_;
paddle_infer::Config config_;
std::shared_ptr<paddle_infer::Predictor> predictor_;
std::vector<TensorInfo> inputs_desc_;
std::vector<TensorInfo> outputs_desc_;
};
} // namespace fastdeploy