Files
FastDeploy/fastdeploy/vision/common/processors/normalize_and_permute.h
Wang Xinyu 16266969a1 [backend][model] Fuse bgr2rgb+normalize+hwc2chw, PPClas preprocess optimization (#509)
* fuse bgr2rgb+normalize+hwc2chw

* add more middle processors in fuse bgr2rgb with normalize

* remove limit long
2022-11-07 21:40:33 +08:00

77 lines
2.5 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/vision/common/processors/base.h"
namespace fastdeploy {
namespace vision {
class FASTDEPLOY_DECL NormalizeAndPermute : public Processor {
public:
NormalizeAndPermute(const std::vector<float>& mean,
const std::vector<float>& std, bool is_scale = true,
const std::vector<float>& min = std::vector<float>(),
const std::vector<float>& max = std::vector<float>(),
bool swap_rb = false);
bool ImplByOpenCV(Mat* mat);
#ifdef ENABLE_FLYCV
bool ImplByFlyCV(Mat* mat);
#endif
std::string Name() { return "NormalizeAndPermute"; }
// While use normalize, it is more recommend not use this function
// this function will need to compute result = ((mat / 255) - mean) / std
// if we use the following method
// ```
// auto norm = Normalize(...)
// norm(mat)
// ```
// There will be some precomputation in contruct function
// and the `norm(mat)` only need to compute result = mat * alpha + beta
// which will reduce lots of time
static bool Run(Mat* mat, const std::vector<float>& mean,
const std::vector<float>& std, bool is_scale = true,
const std::vector<float>& min = std::vector<float>(),
const std::vector<float>& max = std::vector<float>(),
ProcLib lib = ProcLib::DEFAULT, bool swap_rb = false);
void SetAlpha(const std::vector<float>& alpha) {
alpha_.clear();
std::vector<float>().swap(alpha_);
alpha_.assign(alpha.begin(), alpha.end());
}
void SetBeta(const std::vector<float>& beta) {
beta_.clear();
std::vector<float>().swap(beta_);
beta_.assign(beta.begin(), beta.end());
}
bool GetSwapRB() {
return swap_rb_;
}
void SetSwapRB(bool swap_rb) {
swap_rb_ = swap_rb;
}
private:
std::vector<float> alpha_;
std::vector<float> beta_;
bool swap_rb_;
};
} // namespace vision
} // namespace fastdeploy