mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	 60a44f5af1
			
		
	
	60a44f5af1
	
	
	
		
			
			* 添加paddleclas模型 * 更新README_CN * 更新README_CN * 更新README * update get_model.sh * update get_models.sh * update paddleseg models * update paddle_seg models * update paddle_seg models * modified test resources * update benchmark_gpu_trt.sh * add paddle detection * add paddledetection to benchmark * modified benchmark cmakelists * update benchmark scripts * modified benchmark function calling --------- Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
		
			
				
	
	
		
			90 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			90 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			C++
		
	
	
		
			Executable File
		
	
	
	
	
| // Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "flags.h"
 | |
| #include "macros.h"
 | |
| #include "option.h"
 | |
| 
 | |
| namespace vision = fastdeploy::vision;
 | |
| namespace benchmark = fastdeploy::benchmark;
 | |
| 
 | |
| DEFINE_bool(no_nms, false, "Whether the model contains nms.");
 | |
| 
 | |
| int main(int argc, char* argv[]) {
 | |
| #if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION)
 | |
|   // Initialization
 | |
|   auto option = fastdeploy::RuntimeOption();
 | |
|   if (!CreateRuntimeOption(&option, argc, argv, true)) {
 | |
|     return -1;
 | |
|   }
 | |
|   auto im = cv::imread(FLAGS_image);
 | |
|   std::unordered_map<std::string, std::string> config_info;
 | |
|   benchmark::ResultManager::LoadBenchmarkConfig(FLAGS_config_path,
 | |
|                                                 &config_info);
 | |
|   std::string model_name, params_name, config_name;
 | |
|   auto model_format = fastdeploy::ModelFormat::PADDLE;
 | |
|   if (!UpdateModelResourceName(&model_name, ¶ms_name, &config_name,
 | |
|                                &model_format, config_info)) {
 | |
|     return -1;
 | |
|   }
 | |
|   auto model_file = FLAGS_model + sep + model_name;
 | |
|   auto params_file = FLAGS_model + sep + params_name;
 | |
|   auto config_file = FLAGS_model + sep + config_name;
 | |
|   if (config_info["backend"] == "paddle_trt") {
 | |
|     option.paddle_infer_option.collect_trt_shape = true;
 | |
|   }
 | |
|   if (config_info["backend"] == "paddle_trt" ||
 | |
|       config_info["backend"] == "trt") {
 | |
|     option.trt_option.SetShape("image", {1, 3, 640, 640}, {1, 3, 640, 640},
 | |
|                                {1, 3, 640, 640});
 | |
|     option.trt_option.SetShape("scale_factor", {1, 2}, {1, 2},
 | |
|                                {1, 2});
 | |
|   }
 | |
|   auto model_gfl = vision::detection::GFL(
 | |
|       model_file, params_file, config_file, option, model_format);
 | |
|   vision::DetectionResult res;
 | |
|   if (config_info["precision_compare"] == "true") {
 | |
|     // Run once at least
 | |
|     model_gfl.Predict(im, &res);
 | |
|     // 1. Test result diff
 | |
|     std::cout << "=============== Test result diff =================\n";
 | |
|     // Save result to -> disk.
 | |
|     std::string det_result_path = "gfl_result.txt";
 | |
|     benchmark::ResultManager::SaveDetectionResult(res, det_result_path);
 | |
|     // Load result from <- disk.
 | |
|     vision::DetectionResult res_loaded;
 | |
|     benchmark::ResultManager::LoadDetectionResult(&res_loaded, det_result_path);
 | |
|     // Calculate diff between two results.
 | |
|     auto det_diff =
 | |
|         benchmark::ResultManager::CalculateDiffStatis(res, res_loaded);
 | |
|     std::cout << "Boxes diff: mean=" << det_diff.boxes.mean
 | |
|               << ", max=" << det_diff.boxes.max
 | |
|               << ", min=" << det_diff.boxes.min << std::endl;
 | |
|     std::cout << "Label_ids diff: mean=" << det_diff.labels.mean
 | |
|               << ", max=" << det_diff.labels.max
 | |
|               << ", min=" << det_diff.labels.min << std::endl;
 | |
|   }
 | |
|   // Run profiling
 | |
|   if (FLAGS_no_nms) {
 | |
|     model_gfl.GetPostprocessor().ApplyNMS();
 | |
|   }
 | |
|   BENCHMARK_MODEL(model_gfl, model_gfl.Predict(im, &res))
 | |
|   auto vis_im = vision::VisDetection(im, res);
 | |
|   cv::imwrite("vis_result.jpg", vis_im);
 | |
|   std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
 | |
| #endif
 | |
| 
 | |
|   return 0;
 | |
| }
 |