Files
FastDeploy/fastdeploy/model_executor/layers/lm_head.py
2025-07-19 23:19:27 +08:00

138 lines
5.0 KiB
Python

"""
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from typing import Dict, Optional
import numpy as np
import paddle
from paddle import nn
from paddle.distributed import fleet
from fastdeploy.config import FDConfig
from .utils import get_tensor
class ParallelLMHead(nn.Layer):
"""
"Parallelized LM head.
"""
def __init__(
self,
fd_config: FDConfig,
num_embeddings: int,
embedding_dim: int,
prefix: str = "",
with_bias: bool = False,
) -> None:
"""
Parallelized LMhead.
Args:
fd_config (FDConfig): Arguments related to inference, containing
attributes such as weight_dtype, act_dtype, mp_size, hidden_size, head_dim,
num_attention_heads, and ffn_hidden_size.
num_embeddings (int): vocabulary size.
embedding_dim (int): size of hidden state.
prefix (str): The name of current layer. Defaults to "".
with_bias (bool): whether to have bias. Default: False.
"""
super(ParallelLMHead, self).__init__()
self.weight_key: str = prefix + ".weight"
if with_bias:
self.bias_key: Optional[str] = prefix + ".bias"
else:
self.bias_key: Optional[str] = None
self.use_ep: bool = fd_config.parallel_config.use_ep
self.column_cut = True
ColumnParallelLinear = fleet.meta_parallel.ColumnParallelLinear
RowParallelLinear = fleet.meta_parallel.RowParallelLinear
self.tie_word_embeddings: bool = fd_config.model_config.tie_word_embeddings
if self.use_ep:
self.weight = self.create_parameter(
shape=[embedding_dim, num_embeddings],
dtype=paddle.get_default_dtype(),
is_bias=False,
)
else:
if self.column_cut:
need_gather = True
self.linear = ColumnParallelLinear(
embedding_dim,
num_embeddings,
mp_group=fleet.get_hybrid_communicate_group().get_model_parallel_group(),
weight_attr=None,
has_bias=True if self.bias_key is not None else False,
gather_output=need_gather,
fuse_matmul_bias=False, # False diff更小
)
else:
self.linear = RowParallelLinear(
embedding_dim,
num_embeddings,
mp_group=fleet.get_hybrid_communicate_group().get_model_parallel_group(),
weight_attr=None,
has_bias=True if self.bias_key is not None else False,
input_is_parallel=False,
fuse_matmul_bias=False, # False diff更小
)
def load_state_dict(self, state_dict: Dict[str, paddle.Tensor | np.ndarray]):
"""
Load the checkpoint state dictionary into the layer.
Args:
state_dict (dict): A dictionary containing the checkpoint weights and biases.
"""
if self.use_ep:
self.weight.set_value(get_tensor(state_dict.pop(self.weight_key)).astype(paddle.get_default_dtype()))
else:
if self.tie_word_embeddings:
self.linear.weight.set_value(
get_tensor(state_dict.pop(self.weight_key)).astype(paddle.get_default_dtype()).transpose([1, 0])
)
else:
weight_tensor = get_tensor(state_dict.pop(self.weight_key)).astype(paddle.get_default_dtype())
if self.linear.weight.shape != weight_tensor.shape:
weight_tensor = weight_tensor.transpose([1, 0])
self.linear.weight.set_value(weight_tensor)
if self.bias_key is not None:
bias = get_tensor(state_dict.pop(self.bias_key)).astype(paddle.get_default_dtype())
self.linear.bias.set_value(bias)
def forward(self, input: paddle.Tensor) -> paddle.Tensor:
"""
Defines the forward computation of the layer.
Args:
input (Tensor): The input tensor to the layer.
Returns:
Tensor: The output tensor after processing through the layer.
"""
logits = input
if self.use_ep:
logits = paddle.matmul(logits, self.weight)
else:
logits = self.linear(logits)
return logits