Files
FastDeploy/fastdeploy/distributed/custom_all_reduce/custom_all_reduce.py
2025-07-19 23:19:27 +08:00

228 lines
8.1 KiB
Python

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import atexit
import ctypes
from contextlib import contextmanager
from typing import List, Optional
import paddle
import paddle.distributed as dist
from paddle.distributed.communication.group import Group
from fastdeploy.distributed.custom_all_reduce import cuda_wrapper
from fastdeploy.model_executor.ops.gpu import (
all_reduce,
dispose,
get_graph_buffer_ipc_meta,
init_custom_all_reduce,
meta_size,
register_buffer,
register_graph_buffers,
)
try:
meta_size()
custom_ar = True
except Exception:
custom_ar = False
_instances = []
class CustomAllreduce:
_SUPPORTED_WORLD_SIZES = [2, 4, 6, 8]
# max_size: max supported allreduce size
def __init__(self, group: Group, max_size: int = 8192 * 1024) -> None:
"""
Args:
device: the device to bind the CustomAllreduce to. If None,
it will be bind to f"cuda:{local_rank}".
It is the caller's responsibility to make sure each communicator
is bind to a unique device, and all communicators in this group
are in the same node.
"""
self._IS_CAPTURING = False
self.disabled = True
self.group = group
if not custom_ar:
# disable because of missing custom allreduce library
# e.g. in a non-cuda environment
return
rank = dist.get_rank(group=self.group)
self.rank = rank
world_size = dist.get_world_size(group=self.group)
if world_size == 1:
# No need to initialize custom allreduce for single GPU case.
return
if world_size not in CustomAllreduce._SUPPORTED_WORLD_SIZES:
return
if world_size < 2:
return
self.disabled = False
# Buffers memory are owned by this Python class and passed to C++.
# Meta data composes of two parts: meta data for synchronization and a
# temporary buffer for storing intermediate allreduce results.
self.meta_ptrs = self.create_shared_buffer(group, meta_size() + max_size)
# This is a pre-registered IPC buffer. In eager mode, input tensors
# are first copied into this buffer before allreduce is performed
self.buffer_ptrs = self.create_shared_buffer(group, max_size)
# This is a buffer for storing the tuples of pointers pointing to
# IPC buffers from all ranks. Each registered tuple has size of
# 8*world_size bytes where world_size is at most 8. Allocating 8MB
# is enough for 131072 such tuples. The largest model I've seen only
# needs less than 10000 of registered tuples.
self.rank_data = paddle.empty([8 * 1024 * 1024], dtype=paddle.uint8)
self.max_size = max_size
self.rank = rank
self.world_size = world_size
self.full_nvlink = True
self._ptr = init_custom_all_reduce(self.meta_ptrs, self.rank_data, rank, self.full_nvlink)
register_buffer(self._ptr, self.buffer_ptrs)
print("zss init custom allreduce", self._ptr)
_instances.append(self)
@staticmethod
def create_shared_buffer(group: Group, size_in_bytes: int) -> List[int]:
"""
Creates a shared buffer and returns a list of pointers
representing the buffer on all processes in the group.
"""
lib = cuda_wrapper.CudaRTLibrary()
pointer = lib.cudaMalloc(size_in_bytes)
# lib.cudaMemset(pointer, 2, size_in_bytes)
handle = lib.cudaIpcGetMemHandle(pointer)
rank = dist.get_rank(group=group)
handles = []
dist.all_gather_object(handles, handle, group=group)
pointers: List[int] = []
for i, h in enumerate(handles):
if i == rank:
pointers.append(pointer.value) # type: ignore
else:
pointers.append(lib.cudaIpcOpenMemHandle(h).value) # type: ignore
return pointers
@staticmethod
def free_shared_buffer(group: Group, pointers: List[int], rank: Optional[int] = None) -> None:
if rank is None:
rank = dist.get_rank(group=group)
lib = cuda_wrapper.CudaRTLibrary()
lib.cudaFree(ctypes.c_void_p(pointers[rank]))
def should_custom_ar(self, inp: paddle.Tensor):
if self.disabled:
return False
inp_size = inp.numel() * inp.element_size()
# custom allreduce requires input byte size to be multiples of 16
if inp_size % 16 != 0:
return False
# for 4 or more non NVLink-capable GPUs, custom allreduce provides
# little performance improvement over NCCL.
if self.world_size == 2 or self.full_nvlink:
return inp_size < self.max_size
return False
def all_reduce(
self,
inp: paddle.Tensor,
out: paddle.Tensor = None,
registered: bool = False,
):
"""Performs an out-of-place all reduce.
If registered is True, this assumes inp's pointer is already
IPC-registered. Otherwise, inp is first copied into a pre-registered
buffer.
"""
if out is None:
out = paddle.empty_like(inp)
if registered:
all_reduce(self._ptr, inp, out, 0, 0)
else:
all_reduce(self._ptr, inp, out, self.buffer_ptrs[self.rank], self.max_size)
return out
@contextmanager
def capture(self):
"""
The main responsibility of this context manager is the
`register_graph_buffers` call at the end of the context.
It records all the buffer addresses used in the CUDA graph.
"""
try:
self._IS_CAPTURING = True
yield
finally:
self._IS_CAPTURING = False
if not self.disabled:
self.register_graph_buffers()
def register_graph_buffers(self):
handle, offset = get_graph_buffer_ipc_meta(self._ptr)
all_data = [[None, None] for _ in range(dist.get_world_size(group=self.group))]
all_data[self.rank] = [handle, offset]
ranks = sorted(dist.get_process_group_ranks(group=self.group))
for i, rank in enumerate(ranks):
dist.broadcast_object_list(all_data[i], src=rank, group=self.group, device="cpu")
# Unpack list of tuples to tuple of lists.
handles = [d[0] for d in all_data] # type: ignore
offsets = [d[1] for d in all_data] # type: ignore
register_graph_buffers(self._ptr, handles, offsets)
def custom_all_reduce(self, input: paddle.Tensor) -> Optional[paddle.Tensor]:
"""The main allreduce API that provides support for cuda graph."""
# When custom allreduce is disabled, this will be None.
if self.disabled or not self.should_custom_ar(input):
return None
if self._IS_CAPTURING:
if paddle.cuda.is_current_stream_capturing():
return self.all_reduce(input, registered=True)
else:
# If warm up, mimic the allocation pattern since custom
# allreduce is out-of-place.
return paddle.empty_like(input)
else:
return self.all_reduce(input, registered=False)
def close(self):
if not self.disabled and self._ptr:
dispose(self._ptr)
self._ptr = 0
self.free_shared_buffer(self.group, self.meta_ptrs, rank=self.rank)
self.free_shared_buffer(self.group, self.buffer_ptrs, rank=self.rank)
def _cleanup_instances():
for instance in _instances:
instance.close()
atexit.register(_cleanup_instances)