Files
FastDeploy/fastdeploy/distributed/custom_all_reduce/cuda_wrapper.py
2025-07-19 23:19:27 +08:00

190 lines
7.2 KiB
Python
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This file is a pure Python wrapper for the cudart library.
It avoids the need to compile a separate shared library, and is
convenient for use when we just need to call a few functions.
"""
import ctypes
from dataclasses import dataclass
from typing import Any, Dict, List, Optional
cudaError_t = ctypes.c_int
cudaMemcpyKind = ctypes.c_int
class cudaIpcMemHandle_t(ctypes.Structure):
_fields_ = [("internal", ctypes.c_byte * 128)]
@dataclass
class Function:
name: str
restype: Any
argtypes: List[Any]
def find_loaded_library(lib_name) -> Optional[str]:
"""
According to according to https://man7.org/linux/man-pages/man5/proc_pid_maps.5.html,
the file `/proc/self/maps` contains the memory maps of the process, which includes the
shared libraries loaded by the process. We can use this file to find the path of the
a loaded library.
"""
found = False
with open("/proc/self/maps") as f:
for line in f:
if lib_name in line:
found = True
break
if not found:
# the library is not loaded in the current process
return None
# if lib_name is libcudart, we need to match a line with:
# address /path/to/libcudart-hash.so.11.0
start = line.index("/")
path = line[start:].strip()
filename = path.split("/")[-1]
assert filename.rpartition(".so")[0].startswith(
lib_name
), f"Unexpected filename: {filename} for library {lib_name}"
return path
class CudaRTLibrary:
exported_functions = [
# cudaError_t cudaSetDevice ( int device )
Function("cudaSetDevice", cudaError_t, [ctypes.c_int]),
# cudaError_t cudaDeviceSynchronize ( void )
Function("cudaDeviceSynchronize", cudaError_t, []),
# cudaError_t cudaDeviceReset ( void )
Function("cudaDeviceReset", cudaError_t, []),
# const char* cudaGetErrorString ( cudaError_t error )
Function("cudaGetErrorString", ctypes.c_char_p, [cudaError_t]),
# cudaError_t cudaMalloc ( void** devPtr, size_t size )
Function(
"cudaMalloc",
cudaError_t,
[ctypes.POINTER(ctypes.c_void_p), ctypes.c_size_t],
),
# cudaError_t cudaFree ( void* devPtr )
Function("cudaFree", cudaError_t, [ctypes.c_void_p]),
# cudaError_t cudaMemset ( void* devPtr, int value, size_t count )
Function(
"cudaMemset",
cudaError_t,
[ctypes.c_void_p, ctypes.c_int, ctypes.c_size_t],
),
# cudaError_t cudaMemcpy ( void* dst, const void* src, size_t count, cudaMemcpyKind kind )
Function(
"cudaMemcpy",
cudaError_t,
[ctypes.c_void_p, ctypes.c_void_p, ctypes.c_size_t, cudaMemcpyKind],
),
# cudaError_t cudaIpcGetMemHandle ( cudaIpcMemHandle_t* handle, void* devPtr )
Function(
"cudaIpcGetMemHandle",
cudaError_t,
[ctypes.POINTER(cudaIpcMemHandle_t), ctypes.c_void_p],
),
# cudaError_t cudaIpcOpenMemHandle ( void** devPtr, cudaIpcMemHandle_t handle, unsigned int flags )
Function(
"cudaIpcOpenMemHandle",
cudaError_t,
[
ctypes.POINTER(ctypes.c_void_p),
cudaIpcMemHandle_t,
ctypes.c_uint,
],
),
]
# class attribute to store the mapping from the path to the library
# to avoid loading the same library multiple times
path_to_library_cache: Dict[str, Any] = {}
# class attribute to store the mapping from library path
# to the corresponding dictionary
path_to_dict_mapping: Dict[str, Dict[str, Any]] = {}
def __init__(self, so_file: Optional[str] = None):
if so_file is None:
so_file = find_loaded_library("libcudart")
if so_file is None:
pass
# so_file = envs.VLLM_CUDART_SO_PATH # fallback to env var
assert so_file is not None, (
"libcudart is not loaded in the current process, " "try setting VLLM_CUDART_SO_PATH"
)
if so_file not in CudaRTLibrary.path_to_library_cache:
lib = ctypes.CDLL(so_file)
CudaRTLibrary.path_to_library_cache[so_file] = lib
self.lib = CudaRTLibrary.path_to_library_cache[so_file]
if so_file not in CudaRTLibrary.path_to_dict_mapping:
_funcs = {}
for func in CudaRTLibrary.exported_functions:
f = getattr(self.lib, func.name)
f.restype = func.restype
f.argtypes = func.argtypes
_funcs[func.name] = f
CudaRTLibrary.path_to_dict_mapping[so_file] = _funcs
self.funcs = CudaRTLibrary.path_to_dict_mapping[so_file]
def CUDART_CHECK(self, result: cudaError_t) -> None:
if result != 0:
error_str = self.cudaGetErrorString(result)
raise RuntimeError(f"CUDART error: {error_str}")
def cudaGetErrorString(self, error: cudaError_t) -> str:
return self.funcs["cudaGetErrorString"](error).decode("utf-8")
def cudaSetDevice(self, device: int) -> None:
self.CUDART_CHECK(self.funcs["cudaSetDevice"](device))
def cudaDeviceSynchronize(self) -> None:
self.CUDART_CHECK(self.funcs["cudaDeviceSynchronize"]())
def cudaDeviceReset(self) -> None:
self.CUDART_CHECK(self.funcs["cudaDeviceReset"]())
def cudaMalloc(self, size: int) -> ctypes.c_void_p:
devPtr = ctypes.c_void_p()
self.CUDART_CHECK(self.funcs["cudaMalloc"](ctypes.byref(devPtr), size))
return devPtr
def cudaFree(self, devPtr: ctypes.c_void_p) -> None:
self.CUDART_CHECK(self.funcs["cudaFree"](devPtr))
def cudaMemset(self, devPtr: ctypes.c_void_p, value: int, count: int) -> None:
self.CUDART_CHECK(self.funcs["cudaMemset"](devPtr, value, count))
def cudaMemcpy(self, dst: ctypes.c_void_p, src: ctypes.c_void_p, count: int) -> None:
cudaMemcpyDefault = 4
kind = cudaMemcpyDefault
self.CUDART_CHECK(self.funcs["cudaMemcpy"](dst, src, count, kind))
def cudaIpcGetMemHandle(self, devPtr: ctypes.c_void_p) -> cudaIpcMemHandle_t:
handle = cudaIpcMemHandle_t()
self.CUDART_CHECK(self.funcs["cudaIpcGetMemHandle"](ctypes.byref(handle), devPtr))
return handle
def cudaIpcOpenMemHandle(self, handle: cudaIpcMemHandle_t) -> ctypes.c_void_p:
cudaIpcMemLazyEnablePeerAccess = 1
devPtr = ctypes.c_void_p()
self.CUDART_CHECK(
self.funcs["cudaIpcOpenMemHandle"](ctypes.byref(devPtr), handle, cudaIpcMemLazyEnablePeerAccess)
)
return devPtr