Files
FastDeploy/fastdeploy/worker/worker_process.py
chenjian 25498efcf3 [Optimize] Support and robust for tpN for PD (#4595)
* [Optimize] Support and robust for tpN for PD

* fix

* fix

* support dpM tpN for cache messager

* fix

* fix token counter

* fix bug for merge develop

* fix bug

* robust cache messager for v0
2025-11-03 15:38:31 +08:00

1001 lines
40 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import argparse
import json
import os
import time
from multiprocessing import shared_memory
from typing import Tuple
import numpy as np
import paddle
import paddle.distributed as dist
from paddle.distributed import fleet
from fastdeploy import envs
from fastdeploy.config import (
CacheConfig,
DeviceConfig,
EarlyStopConfig,
EPLBConfig,
ErnieArchitectures,
FDConfig,
GraphOptimizationConfig,
LoadConfig,
ModelConfig,
ParallelConfig,
PlasAttentionConfig,
SpeculativeConfig,
StructuredOutputsConfig,
)
from fastdeploy.eplb.async_expert_loader import (
MODEL_MAIN_NAME,
REARRANGE_EXPERT_MAGIC_NUM,
create_mmap,
load_tensor_from_shm_mem,
)
from fastdeploy.eplb.experts_manager import RedundantExpertManager
from fastdeploy.eplb.utils import RearrangeExpertState
from fastdeploy.inter_communicator import EngineWorkerQueue as TaskQueue
from fastdeploy.inter_communicator import (
ExistTaskStatus,
IPCSignal,
ModelWeightsStatus,
shared_memory_exists,
)
from fastdeploy.model_executor.layers.quantization import parse_quant_config
from fastdeploy.model_executor.utils import v1_loader_support
from fastdeploy.platforms import current_platform
from fastdeploy.scheduler import SchedulerConfig
from fastdeploy.utils import get_logger, optional_type
from fastdeploy.worker.worker_base import WorkerBase
logger = get_logger("worker_process", "worker_process.log")
def get_worker(fd_config: FDConfig, local_rank: int, rank: int) -> WorkerBase:
"""
get worker of different device
"""
if fd_config.model_config.enable_logprob and not current_platform.is_cuda():
raise NotImplementedError("Only CUDA platform supports logprob.")
if current_platform.is_dcu():
from fastdeploy.worker.dcu_worker import DcuWorker
return DcuWorker(fd_config=fd_config, local_rank=local_rank, rank=rank)
if current_platform.is_cuda():
from fastdeploy.worker.gpu_worker import GpuWorker
return GpuWorker(fd_config=fd_config, local_rank=local_rank, rank=rank)
if current_platform.is_xpu():
from fastdeploy.worker.xpu_worker import XpuWorker
return XpuWorker(fd_config=fd_config, local_rank=local_rank, rank=rank)
if current_platform.is_iluvatar():
from fastdeploy.worker.iluvatar_worker import IluvatarWorker
return IluvatarWorker(fd_config=fd_config, local_rank=local_rank, rank=rank)
if current_platform.is_gcu():
from fastdeploy.worker.gcu_worker import GcuWorker
return GcuWorker(fd_config=fd_config, local_rank=local_rank, rank=rank)
if current_platform.is_maca():
from fastdeploy.worker.metax_worker import MetaxWorker
return MetaxWorker(fd_config=fd_config, local_rank=local_rank, rank=rank)
if current_platform.is_intel_hpu():
from fastdeploy.worker.hpu_worker import HpuWorker
return HpuWorker(fd_config=fd_config, local_rank=local_rank, rank=rank)
def init_distributed_environment(seed: int = 20) -> Tuple[int, int]:
"""Initialize Paddle Fleet and get rank of worker"""
# Global rank
ranks = dist.get_world_size()
dist_strategy = fleet.DistributedStrategy()
if ranks > 0:
dist_strategy.hybrid_configs = {
"dp_degree": 1,
"mp_degree": ranks,
"pp_degree": 1,
"sharding_degree": 1,
}
# Set control in tensor parallel
dist_strategy.tensor_parallel_configs = {"tensor_init_seed": seed}
fleet.init(is_collective=True, strategy=dist_strategy)
# Local rank
local_rank = fleet.worker_index()
else:
local_rank = 0
return ranks, local_rank
def update_fd_config_for_mm(fd_config: FDConfig) -> None:
architectures = fd_config.model_config.architectures
if fd_config.model_config.enable_mm and ErnieArchitectures.contains_ernie_arch(architectures):
fd_config.model_config.tensor_parallel_degree = fd_config.parallel_config.tensor_parallel_size
fd_config.model_config.tensor_parallel_rank = fd_config.parallel_config.tensor_parallel_rank
fd_config.model_config.vision_config.dtype = fd_config.model_config.dtype
class PaddleDisWorkerProc:
"""
Paddle Distributed wrapper for fastdeploy.worker.Worker,
for handling single-node multi-GPU tensor parallel.
The wrapper internally executes an event loop that continuously executes requests
in the task queue. Control flow is transmitted by IPC.
"""
def __init__(self, fd_config: FDConfig, ranks: int = 1, local_rank: int = 0) -> None:
"""
Initialize a distributed worker and task queue for single-node multi-GPU setup.
Args:
fd_config (FDConfig): Arguments related to inference, containing
attributes such as weight_dtype, act_dtype, mp_size, hidden_size, head_dim,
num_attention_heads, and ffn_hidden_size.
"""
self.ranks = ranks
self.local_rank = local_rank
self.fd_config = fd_config
self.parallel_config = fd_config.parallel_config
self.cache_config = fd_config.cache_config
self.scheduler_config = fd_config.scheduler_config
self.eplb_config = fd_config.eplb_config
# TODO(gongshaotian): Use worker factory to get worker
self.worker = get_worker(fd_config=fd_config, local_rank=self.local_rank, rank=self.ranks)
self.max_chips_per_node = 16 if current_platform.is_iluvatar() else 8
def init_health_status(self) -> None:
"""
Initialize the health status of the worker.
Worker Status:
worker_ready_signal:
worker_healthy_live_signal:
exist_task_signal:
exist_swapped_task_signal:
model_weights_status:
"""
self.max_chips_per_node = 16 if current_platform.is_iluvatar() else 8
if self.parallel_config.data_parallel_size > 1 and not envs.FD_ENABLE_MULTI_API_SERVER:
launched_expert_service_signal_data = np.zeros(
shape=[self.parallel_config.data_parallel_size // self.fd_config.nnode], dtype=np.int32
)
self.launched_expert_service_signal = IPCSignal(
name="launched_expert_service_signal",
array=launched_expert_service_signal_data,
dtype=np.int32,
suffix=self.parallel_config.engine_pid,
create=False,
)
while (
self.launched_expert_service_signal.value[
self.parallel_config.local_data_parallel_id % self.max_chips_per_node
]
== 0
):
pass
# init worker_ready_signal
array_size = min(
self.max_chips_per_node,
self.parallel_config.tensor_parallel_size * self.parallel_config.data_parallel_size,
)
workers_ready = np.zeros(shape=[array_size], dtype=np.int32)
self.worker_ready_signal = IPCSignal(
name="worker_ready_signal",
array=workers_ready,
dtype=np.int32,
suffix=self.parallel_config.engine_pid,
create=False,
)
self.worker_ready_signal.value[self.local_rank % self.max_chips_per_node] = 1
# init worker_healthy_live_signal
workers_alive = np.zeros(shape=[min(array_size, self.parallel_config.tensor_parallel_size)], dtype=np.int32)
self.worker_healthy_live_signal = IPCSignal(
name="worker_healthy_live_signal",
array=workers_alive,
dtype=np.int32,
suffix=self.parallel_config.engine_worker_queue_port,
create=False,
)
local_rank = self.local_rank % self.parallel_config.tensor_parallel_size
self.worker_healthy_live_signal.value[local_rank % self.max_chips_per_node] = int(time.time())
# init model_weights_status
workers_model_weights = np.zeros(shape=[1], dtype=np.int32)
self.model_weights_status = IPCSignal(
name="model_weights_status",
array=workers_model_weights,
dtype=np.int32,
suffix=self.parallel_config.engine_worker_queue_port,
create=False,
)
# init exist_task_signal
workers_exist_task = np.zeros([1], dtype=np.int32)
self.exist_task_signal = IPCSignal(
name="exist_task_signal",
array=workers_exist_task,
dtype=np.int32,
suffix=self.parallel_config.engine_worker_queue_port,
create=False,
)
# init exist_swapped_task_signal
workers_swapped_task = np.zeros(shape=[1], dtype=np.int32)
self.exist_swapped_task_signal = IPCSignal(
name="exist_swapped_task_signal",
array=workers_swapped_task,
dtype=np.int32,
suffix=self.parallel_config.engine_worker_queue_port,
create=False,
)
# init exist_prefill_task_signal
exist_prefill_task_signal_data = np.zeros([1], dtype=np.int32)
self.exist_prefill_task_signal = IPCSignal(
name="exist_prefill_task_signal",
array=exist_prefill_task_signal_data,
dtype=np.int32,
suffix=self.parallel_config.engine_worker_queue_port,
create=False,
)
def update_weights_from_tensor(self, mmap_infos):
"""
update_weights_from_tensor
"""
state_dicts = load_tensor_from_shm_mem(self.experts_manager.tensor_infos, mmap_infos[MODEL_MAIN_NAME], logger)
rank_expert_list, logical_to_physical_map, expert_count = self.experts_manager.get_ep_rank_to_expert_id_list()
self.worker.get_model().redundant_table_manger.update_expert_rank_table(
rank_expert_list, logical_to_physical_map, expert_count
)
# TO BE FIXED
self.worker.get_model().update_state_dict(state_dicts)
def _broadcast_model_weights_signal(self, src: int, group) -> int:
model_weights_signal_tensor = paddle.full(shape=[1], fill_value=self.model_weights_signal[0], dtype="int32")
paddle.distributed.broadcast(model_weights_signal_tensor, src=src, group=group)
return model_weights_signal_tensor.item()
def _tp_barrier_wait(self):
if current_platform.is_xpu():
self.task_queue.worker_process_tp_barrier.wait()
else:
paddle.distributed.barrier(self.parallel_config.tp_group)
def event_loop_normal(self) -> None:
"""Main event loop for Paddle Distributed Workers.
TODO(gongshaotian): support remote calling of functions that control worker.
"""
if self.eplb_config.enable_redundant_experts:
self.last_dump_expert_workload_ts = 0
self.experts_manager = RedundantExpertManager(
rank=self.local_rank, ep_size=self.ranks, fd_config=self.fd_config
)
num_layers = self.fd_config.model_config.num_hidden_layers
num_experts = self.fd_config.model_config.moe_num_experts
expert_token_stats = np.zeros((num_layers, num_experts), dtype=np.int32)
shm_local_experts_token_stats = shared_memory.SharedMemory(
create=False,
size=expert_token_stats.nbytes,
name=f"{envs.get_unique_name('local_experts_token_stats_dprank' + self.local_rank)}",
)
expert_tokens_stats_array = np.ndarray(
expert_token_stats.shape, dtype=expert_token_stats.dtype, buffer=shm_local_experts_token_stats.buf
)
signal_clear_experts_token_stats = np.zeros([1], dtype=np.int32)
shm_signal_clear_experts_token_stats = shared_memory.SharedMemory(
create=False,
size=signal_clear_experts_token_stats.nbytes,
name=f"{envs.get_unique_name('signal_clear_experts_token_stats_dprank' + self.local_rank)}",
)
signal_clear_experts_token_stats_array = np.ndarray(
signal_clear_experts_token_stats.shape,
dtype=signal_clear_experts_token_stats.dtype,
buffer=shm_signal_clear_experts_token_stats.buf,
)
if self.local_rank == 0:
signal_update_weight_from_tensor = np.zeros([1], dtype=np.int32)
shm_signal_update_weight_from_tensor = shared_memory.SharedMemory(
create=False,
size=signal_update_weight_from_tensor.nbytes,
name=f"{envs.get_unique_name('signal_update_weight_from_tensor_dprank' + self.local_rank)}",
)
signal_update_weight_from_tensor_array = np.ndarray(
signal_update_weight_from_tensor.shape,
dtype=signal_update_weight_from_tensor.dtype,
buffer=shm_signal_update_weight_from_tensor.buf,
)
rearrange_experts_status = np.zeros([1], dtype=np.int32)
shm_rearrange_experts_status = shared_memory.SharedMemory(
create=False,
size=rearrange_experts_status.nbytes,
name=f"{envs.get_unique_name('rearrange_experts_status_dprank' + self.local_rank)}",
)
rearrange_experts_status_array = np.ndarray(
rearrange_experts_status.shape,
dtype=rearrange_experts_status.dtype,
buffer=shm_rearrange_experts_status.buf,
)
expert_workload_dump_interval = envs.FD_REDUNDANT_EXPERT_DUMP_WORKLOAD_INTERVAL
mmap_infos = create_mmap(
[MODEL_MAIN_NAME], self.local_rank, self.ranks, shm_uuid=os.getenv("SHM_UUID", ""), logger=logger
)
# Currently, only support single node
self.nnode = int((self.parallel_config.tensor_parallel_size + 7) // 8)
req_ids = []
num_running_requests = 0
local_rank = self.local_rank % self.parallel_config.tensor_parallel_size
self.model_weights_signal = np.zeros([1], dtype=np.int32)
while True:
if self.eplb_config.enable_redundant_experts:
rearrange_time = time.time()
# 获取专家负载
if expert_tokens_stats_array is not None and (
int(rearrange_time) - self.last_dump_expert_workload_ts > expert_workload_dump_interval
):
self.last_dump_expert_workload_ts = int(rearrange_time)
clear_stat = False
if signal_clear_experts_token_stats_array[0] == 1:
clear_stat = True
signal_clear_experts_token_stats_array[0] = 0
(
new_stats_array,
_,
_,
_,
) = self.worker.get_model().redundant_table_manger.get_expert_tokens_stats(clear_stat=clear_stat)
expert_tokens_stats_array[:] = new_stats_array[:]
elif expert_tokens_stats_array is None:
logger.warning("redundant_expert: expert_tokens_stats_array not init")
# 所有DP同步更新权重
broadcast_value = 0
if self.local_rank == 0 and signal_update_weight_from_tensor_array[0] == 1:
logger.info("redundant_expert: update_weight_from_tensor broadcast signal")
signal_update_weight_from_tensor_array[0] = 0
broadcast_value = REARRANGE_EXPERT_MAGIC_NUM
data = paddle.to_tensor([broadcast_value])
paddle.distributed.broadcast(data, 0)
if data[0] == REARRANGE_EXPERT_MAGIC_NUM:
self.update_weights_from_tensor(mmap_infos)
logger.info(
f"redundant_expert: update_weight_from_tensor success, cost {(time.time() - rearrange_time)*1000}ms"
)
paddle.distributed.barrier()
if self.local_rank == 0:
rearrange_experts_status_array[0] = RearrangeExpertState.done.value
logger.info("redundant_expert: done")
if self.local_rank % self.parallel_config.tensor_parallel_size == 0:
if self.model_weights_status.value[0] != ModelWeightsStatus.NORMAL:
self.model_weights_signal[0] = int(self.model_weights_status.value[0])
if self.fd_config.load_config.dynamic_load_weight and self.parallel_config.enable_expert_parallel:
self.model_weights_signal[0] = self._broadcast_model_weights_signal(
src=0, group=self.parallel_config.ep_group
)
if self.fd_config.load_config.dynamic_load_weight and self.parallel_config.tensor_parallel_size > 1:
self.model_weights_signal[0] = self._broadcast_model_weights_signal(
src=0, group=self.parallel_config.tp_group
)
self.insert_step = False
req_dicts = None
local_rank = self.local_rank % self.parallel_config.tensor_parallel_size
self.worker_healthy_live_signal.value[local_rank % self.max_chips_per_node] = int(time.time())
# The first worker detects whether there are tasks in the task queue
if local_rank == 0:
if self.task_queue.num_tasks() > 0:
if envs.ENABLE_V1_KVCACHE_SCHEDULER or not (
self.fd_config.model_config.enable_mm and self.worker.exist_prefill()
):
if self.nnode > 1 and self.parallel_config.tensor_parallel_size > self.max_chips_per_node:
self.task_queue.read_finish_flag.set(1)
else:
self.exist_task_signal.value[0] = ExistTaskStatus.EXIST
if self.parallel_config.tensor_parallel_size > 1:
# Synchronize the signal for other workers
self._tp_barrier_wait()
if self.fd_config.load_config.dynamic_load_weight:
if self.parallel_config.enable_expert_parallel:
paddle.distributed.barrier(self.parallel_config.ep_group)
else:
paddle.distributed.barrier(self.parallel_config.tp_group)
if self.model_weights_signal[0] != ModelWeightsStatus.NORMAL:
logger.info(
f"Rank: {self.local_rank} to update or clear parameters, signal is {self.model_weights_signal[0]}, [-1:clear, 1:update]"
)
from fastdeploy.rl.dynamic_weight_manager import (
DynamicWeightManager,
)
self.model_weights_status.value[0] = self.model_weights_signal[0]
DynamicWeightManager.check_model_weights_status(
self.model_weights_status,
# model_weights_signal
self.worker.model_runner,
self.parallel_config.engine_worker_queue_port,
)
logger.info(f"current task queue data: {self.task_queue.num_tasks()}")
self.task_queue.clear_data()
self.model_weights_signal[0] = ModelWeightsStatus.NORMAL
logger.info(f"Rank: {self.local_rank} has updated or cleared parameters.")
if self.exist_task_signal.value[0] == ExistTaskStatus.EXIST or self.task_queue.read_finish_flag.get() == 1:
logger.info(f"Rank: {self.local_rank} Detected new requests.")
self.insert_step = True
tasks, read_finish = self.task_queue.get_tasks()
if read_finish:
# Ensure that every worker get the task
self.exist_task_signal.value[0] = ExistTaskStatus.EMPTY
self.task_queue.read_finish_flag.set(0)
req_dicts = []
for req_dict, bsz in tasks:
num_running_requests = int(bsz)
req_dicts.extend(req_dict)
req_ids = [req.request_id for req in req_dicts]
logger.info(
f"Rank: {self.local_rank}, num_running_requests: {num_running_requests}, "
f"num_insert_requests: {len(req_dicts)}, req_ids: {req_ids}"
)
# Process prefill inputs
self.worker.preprocess_new_task(req_dicts, num_running_requests)
if (not self.parallel_config.use_ep) and (not self.worker.model_runner.not_need_stop()):
if self.ranks > 1:
self._tp_barrier_wait()
time.sleep(0.001)
continue
# Execute model to generate token. The generated token will be written to the buffer.
# These generated tokens can be obtained through get_output op.
self.worker.execute_model(req_dicts, num_running_requests)
self.exist_prefill_task_signal.value[0] = self.worker.exist_prefill()
def initialize_kv_cache(self) -> None:
"""Profiles the peak memory usage of the model to determine how many
KV blocks may be allocated without OOMs.
The engine will first conduct a profiling of the existing memory usage.
Then, it calculate the maximum possible number of GPU and CPU blocks
that can be allocated with the remaining free memory.
.. tip::
You may limit the usage of GPU memory
by adjusting the `gpu_memory_utilization` parameter.
"""
if self.fd_config.parallel_config.do_profile:
# 1. Get available memory(bytes)
available_kv_cache_memory = self.worker.determine_available_memory()
logger.info(f"------- available_kv_cache_memory:{available_kv_cache_memory / 1024**3} GB --------")
# 2. Calculate the appropriate number of blocks
model_block_memory_used = self.worker.cal_theortical_kvcache()
num_blocks_local = int(available_kv_cache_memory // model_block_memory_used)
# NOTE(liuzichang): Too many block will lead to illegal memory access
# We will develop dynamic limits in future.
if num_blocks_local > 40000:
logger.info(f"------- Reset num_blocks_local {num_blocks_local} to 40000")
num_blocks_local = min(40000, num_blocks_local)
logger.info(f"------- model_block_memory_used:{model_block_memory_used / 1024**3} GB --------")
logger.info(f"------- num_blocks_local:{num_blocks_local} --------")
if num_blocks_local <= 0:
raise ValueError(
"The total number of blocks cannot be less than zero. "
"Please increase gpu_memory_utilization "
"Or decrease max_num_batched_tokens(max model length)."
)
if self.ranks > 1:
num_blocks_local = paddle.full(shape=[1], fill_value=num_blocks_local, dtype="int32")
dist.all_reduce(num_blocks_local, op=dist.ReduceOp.MIN)
num_blocks_local = num_blocks_local.item()
if self.local_rank % self.max_chips_per_node == 0:
# 3. Send IPCSignal
get_profile_block_num = np.zeros(shape=[1], dtype=np.int32)
self.get_profile_block_num_signal = IPCSignal(
name="get_profile_block_num",
array=get_profile_block_num,
dtype=np.int32,
suffix=self.parallel_config.engine_pid,
create=False,
)
self.get_profile_block_num_signal.value[0] = num_blocks_local
else:
num_blocks_local = self.fd_config.cache_config.total_block_num
logger.info(f"------- num_blocks_global: {num_blocks_local} --------")
# 4. init kv_cache with accurate num_blocks
self.worker.initialize_cache(num_gpu_blocks=num_blocks_local)
def graph_optimize_and_warm_up_model(self) -> None:
self.worker.graph_optimize_and_warm_up_model()
# reset cache_messager prefilled_step signal
if self.scheduler_config.splitwise_role == "prefill":
gpu_id = self.worker.model_runner.device_id
prefilled_step_name = f"splitwise_complete_prefilled_step_{self.local_rank}"
prefilled_step_idx_data = np.zeros(shape=[1], dtype=np.int32)
step_shm_value = IPCSignal(
name=prefilled_step_name,
array=prefilled_step_idx_data,
dtype=np.int32,
suffix=gpu_id,
create=not shared_memory_exists(prefilled_step_name),
)
step_shm_value.value[0] = -1
def init_device(self) -> None:
"""Initialize device and Construct model runner"""
self.worker.init_device()
def start_task_queue_service(self):
# Initialize task queue
task_address = (
self.parallel_config.pod_ip,
self.parallel_config.engine_worker_queue_port,
)
logger.info(f"connect task queue address {task_address}")
self.task_queue = TaskQueue(
address=task_address,
is_server=False,
num_client=self.parallel_config.tensor_parallel_size,
client_id=self.parallel_config.tensor_parallel_rank,
local_data_parallel_id=self.parallel_config.local_data_parallel_id,
)
def load_model(self) -> None:
"""Load weights and create model"""
self.worker.load_model()
loaded_model_signal_data = np.zeros(shape=[1], dtype=np.int32)
self.loaded_model_signal = IPCSignal(
name="loaded_model_signal",
array=loaded_model_signal_data,
dtype=np.int32,
suffix=self.parallel_config.engine_pid,
create=False,
)
if self.ranks > 1:
paddle.distributed.barrier()
self.loaded_model_signal.value[0] = 1
def parse_args():
"""
Parse args from command line
"""
parser = argparse.ArgumentParser("FastDeploy LLM Inference")
parser.add_argument(
"-m",
"--model",
type=str,
default="./output",
help="model dir",
)
parser.add_argument("-mbs", "--max_num_seqs", type=int, default=34, help="max batch size")
parser.add_argument("--num_gpu_blocks_override", type=int, default=None)
parser.add_argument("--block_size", type=int, default=64)
parser.add_argument("--pod_ip", type=str, default="127.0.0.1")
parser.add_argument("--engine_worker_queue_port", type=str, default="9923")
parser.add_argument("--max_model_len", type=int, default=3072, help="max model len")
parser.add_argument("--device_ids", type=str, default="0", help="cuda visible devices")
parser.add_argument("--dtype", type=str, default="bfloat16", help="input dtype")
parser.add_argument("--enc_dec_block_num", type=int, default=1, help="encoder's decoder num")
parser.add_argument(
"--kv_cache_ratio",
type=float,
default=0.7,
help="kv cache ratio for input",
)
parser.add_argument("--first_token_id", type=int, default=1, help="first token id")
parser.add_argument(
"--gpu_memory_utilization",
type=float,
default=0.9,
help="gpu memory utilization",
)
parser.add_argument("--engine_pid", type=int, default=None, help="Process ID of engine")
parser.add_argument("--do_profile", action="store_true", help="do profile or not")
parser.add_argument("--pad_token_id", type=int, default=-1, help="pad token id")
parser.add_argument("--eos_tokens_lens", type=int, default=2, help="eos token lens")
parser.add_argument(
"--enable_chunked_prefill",
action="store_true",
help="enable chunked prefill",
)
parser.add_argument(
"--speculative_config",
type=json.loads,
default=None,
help="Configuration of SpeculativeConfig.",
)
parser.add_argument(
"--max_num_batched_tokens",
type=int,
default=2048,
help="max num batched tokens",
)
parser.add_argument(
"--enable_prefix_caching",
action="store_true",
help="enable prefix cache",
)
parser.add_argument(
"--disable_custom_all_reduce",
action="store_true",
help="enable custom all-reduce",
)
parser.add_argument("--splitwise_role", type=str, default="mixed", help="splitwise role")
parser.add_argument(
"--tensor_parallel_size",
type=int,
default=1,
help="tensor parallel size",
)
parser.add_argument(
"--expert_parallel_size",
type=int,
default=1,
help="expert parallel size",
)
parser.add_argument(
"--data_parallel_size",
type=int,
default=1,
help="data parallel size",
)
parser.add_argument(
"--enable_expert_parallel",
action="store_true",
help="enable expert parallel",
)
parser.add_argument("--ori_vocab_size", type=int, default=None)
parser.add_argument("--think_end_id", type=int, default=-1)
parser.add_argument("--image_patch_id", type=int, default=-1)
parser.add_argument("--line_break_id", type=int, default=-1)
parser.add_argument(
"--quantization",
type=json.loads,
default=None,
help="Quantization name for the model, currently support "
"'wint4', 'wint8',"
"default is None. The priority of this configuration "
"is lower than that of the config file. "
"More complex quantization methods need to be configured via the config file.",
)
parser.add_argument(
"--graph_optimization_config",
type=json.loads,
default=None,
help="Configuration of Graph optimization backend.",
)
parser.add_argument(
"--plas_attention_config",
type=json.loads,
default=None,
help="Configation of plas attention.",
)
parser.add_argument(
"--guided_decoding_backend",
type=str,
default="off",
help="guided decoding backend",
)
parser.add_argument(
"--disable_any_whitespace",
action="store_false",
help="Disable any whitespace for guided decoding.",
)
parser.add_argument(
"--dynamic_load_weight",
action="store_true",
help="Enable dynamic weight loading strategy",
)
parser.add_argument(
"--load_strategy",
type=str,
choices=["ipc", "ipc_snapshot", "meta", "normal"],
default="ipc_snapshot",
help="Weight loading method when dynamic loading is enabled: "
"'ipc': real-time IPC streaming with automatic resharding, "
"'ipc_snapshot': load from disk snapshot of IPC weights.",
)
parser.add_argument(
"--enable_logprob",
action="store_true",
help="Enable output of token-level log probabilities.",
)
parser.add_argument(
"--logprobs_mode",
type=str,
default="raw_logprobs",
help="Indicates the content returned in the logprobs.",
)
parser.add_argument(
"--reasoning_parser",
type=str,
default=None,
help="Flag specifies the reasoning parser to use for extracting reasoning content from the model output",
)
parser.add_argument(
"--early_stop_config",
type=json.loads,
default=None,
help="Configuration of early stop.",
)
parser.add_argument(
"--load_choices",
type=str,
default="default",
help="The format of the model weights to load. default/new_loader.",
)
parser.add_argument(
"--ips",
type=str,
default=None,
help="The ips of multinode deployment.",
)
parser.add_argument(
"--lm_head_fp32",
action="store_true",
help="Flag to specify dtype of lm_head as FP32",
)
parser.add_argument(
"--max_encoder_cache",
type=int,
help="Maximum encoder cache tokens(use 0 to disable).",
)
parser.add_argument(
"--cache-transfer-protocol",
type=str,
default="ipc",
help="support protocol list, comma separated, default is ipc",
)
parser.add_argument(
"--runner",
type=str,
default="auto",
help="The type of model runner to use.Each FD instance only supports one model runner.even if the same model can be used for multiple types.",
)
parser.add_argument(
"--convert",
type=str,
default="auto",
help="Convert the model using adapters. The most common use case is to adapt a text generation model to be used for pooling tasks.",
)
parser.add_argument(
"--override-pooler-config",
type=optional_type(json.loads),
default=None,
help="Override configuration for the pooler.",
)
parser.add_argument(
"--logits-processors",
type=str,
nargs="+",
default=[],
help="FQCNs (Fully Qualified Class Names) of logits processors supported by the service.",
)
args = parser.parse_args()
return args
def initialize_fd_config(args, ranks: int = 1, local_rank: int = 0) -> FDConfig:
"""Initialize FDConfig from either RolloutModelConfig or argparse.Namespace
Args:
config: Configuration object containing all parameters (either RolloutModelConfig or argparse.Namespace)
Returns:
FDConfig: Initialized FastDeploy configuration object
"""
# RL rollout
paddle.set_default_dtype(args.dtype)
model_config = ModelConfig(vars(args))
device_config = DeviceConfig(vars(args))
speculative_config = SpeculativeConfig(args.speculative_config)
parallel_config = ParallelConfig(vars(args))
cache_config = CacheConfig(vars(args))
scheduler_config = SchedulerConfig(vars(args))
parallel_config.tensor_parallel_rank = local_rank % parallel_config.tensor_parallel_size
parallel_config.data_parallel_rank = local_rank // parallel_config.tensor_parallel_size
# config for EP
if parallel_config.expert_parallel_size > 1:
expert_parallel_rank = int(local_rank % parallel_config.expert_parallel_size)
if isinstance(model_config.moe_num_experts, list):
num_experts = model_config.moe_num_experts[0]
else:
num_experts = model_config.moe_num_experts
num_experts_per_rank = num_experts // parallel_config.expert_parallel_size
num_experts_start_offset = expert_parallel_rank * num_experts_per_rank
max_chips_per_node = 16 if current_platform.is_iluvatar() else 8
parallel_config.local_data_parallel_id = parallel_config.data_parallel_rank % (
max_chips_per_node // parallel_config.tensor_parallel_size
)
parallel_config.expert_parallel_rank = expert_parallel_rank
parallel_config.num_experts_per_rank = num_experts_per_rank
parallel_config.num_experts_start_offset = num_experts_start_offset
if args.load_strategy != "meta":
parallel_config.engine_worker_queue_port = parallel_config.engine_worker_queue_port[
parallel_config.local_data_parallel_id
]
parallel_config.set_communicate_group()
load_config = LoadConfig(vars(args))
graph_opt_config = GraphOptimizationConfig(args.graph_optimization_config)
plas_attention_config = PlasAttentionConfig(args.plas_attention_config)
early_stop_config = EarlyStopConfig(args.early_stop_config)
eplb_config = EPLBConfig()
structured_outputs_config: StructuredOutputsConfig = StructuredOutputsConfig(args=vars(args))
# Note(tangbinhan): used for load_checkpoint
model_config.pretrained_config.tensor_parallel_rank = parallel_config.tensor_parallel_rank
model_config.pretrained_config.tensor_parallel_degree = parallel_config.tensor_parallel_size
model_config.pretrained_config.is_mtp = False
model_config.pretrained_config.head_dim = model_config.head_dim
logger.info(f"parallel_config.use_ep {parallel_config.use_ep}")
logger.info(f"parallel_config.tensor_parallel_size {parallel_config.tensor_parallel_size}")
logger.info(f"parallel_config.tensor_parallel_rank {parallel_config.tensor_parallel_rank}")
logger.info(f"parallel_config.engine_worker_queue_port {parallel_config.engine_worker_queue_port}")
if getattr(model_config, "num_hidden_layers", None) is None:
raise ValueError("num_hidden_layers is None")
quant_config = parse_quant_config(
args,
model_config,
is_ernie=ErnieArchitectures.contains_ernie_arch(model_config.architectures),
is_v1_loader=load_config.load_choices == "default_v1",
)
# Log quantization info
logger.info("===========quantization_config==============")
if quant_config is not None:
if model_config.is_quantized:
logger.info("Model Status: Offline Quantized (pre-quantized weights loaded)")
else:
logger.info("Model Status: Original (will apply online quantization)")
logger.info(f"{model_config.quantization_config}")
else:
logger.info("No quantization config found and use original weight and act dtype.")
logger.info(f"- Dynamic load weight: {load_config.dynamic_load_weight}")
logger.info(f"- Load strategy: {load_config.load_strategy}")
if args.splitwise_role != "mixed" and args.cache_transfer_protocol != "rdma":
envs.ENABLE_V1_KVCACHE_SCHEDULER = 0
if not current_platform.is_cuda() and not current_platform.is_xpu():
logger.info("Set ENABLE_V1_KVCACHE_SCHEDULER to 0 due to not supported.")
envs.ENABLE_V1_KVCACHE_SCHEDULER = 0
if structured_outputs_config.guided_decoding_backend != "off":
logger.info("Set ENABLE_V1_KVCACHE_SCHEDULER to 0 due to not supported guided_decoding.")
envs.ENABLE_V1_KVCACHE_SCHEDULER = 0
if envs.ENABLE_V1_KVCACHE_SCHEDULER and args.splitwise_role == "prefill":
os.environ["PREFILL_NODE_ONE_STEP_STOP_V1"] = "1"
fd_config = FDConfig(
model_config=model_config,
parallel_config=parallel_config,
speculative_config=speculative_config,
device_config=device_config,
load_config=load_config,
quant_config=quant_config,
graph_opt_config=graph_opt_config,
early_stop_config=early_stop_config,
cache_config=cache_config,
scheduler_config=scheduler_config,
ips=args.ips,
plas_attention_config=plas_attention_config,
structured_outputs_config=structured_outputs_config,
eplb_config=eplb_config,
)
update_fd_config_for_mm(fd_config)
if fd_config.load_config.load_choices == "default_v1" and not v1_loader_support(fd_config):
fd_config.load_config.load_choices = "default"
architecture = fd_config.model_config.architectures[0]
if "PaddleOCR" in architecture:
envs.FD_ENABLE_MAX_PREFILL = 1
fd_config.cache_config.enable_prefix_caching = False
fd_config.cache_config.max_encoder_cache = 0
return fd_config
def run_worker_proc() -> None:
"""
start worker process
"""
# Get args form Engine
args = parse_args()
ranks, local_rank = init_distributed_environment()
# Get fd_config
fd_config = initialize_fd_config(args, ranks, local_rank)
# Create worker process
if current_platform.is_iluvatar():
from fastdeploy.worker.iluvatar_worker import IluvatarPaddleDisWorkerProc
worker_proc = IluvatarPaddleDisWorkerProc(fd_config, ranks, local_rank)
else:
worker_proc = PaddleDisWorkerProc(fd_config, ranks, local_rank)
# Initialize device and create model runner
worker_proc.init_device()
# Load model
worker_proc.load_model()
# Initialize KV Cache
worker_proc.initialize_kv_cache()
# Trigger CUDAGraph capture
worker_proc.graph_optimize_and_warm_up_model()
# Initialize health status
worker_proc.init_health_status()
worker_proc.start_task_queue_service()
# Start event loop
worker_proc.event_loop_normal()
if __name__ == "__main__":
run_worker_proc()