mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	 05c670e593
			
		
	
	05c670e593
	
	
	
		
			
			* [Sync] Update to latest code * Add new code files * Add new code files * update code * Try to fix build.sh * Try to fix build.sh * Update code * Update requirements.txt * Update code --------- Co-authored-by: Jiang-Jia-Jun <jiangjiajun@baidu.com>
		
			
				
	
	
		
			447 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			447 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| # Copyright (c) 2025  PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License"
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| 
 | |
| import os
 | |
| 
 | |
| import numpy as np
 | |
| from paddleformers.generation import GenerationConfig
 | |
| 
 | |
| from fastdeploy import envs
 | |
| from fastdeploy.utils import data_processor_logger
 | |
| from fastdeploy.input.ernie_tokenizer import ErnieBotTokenizer
 | |
| 
 | |
| from fastdeploy.input.text_processor import BaseDataProcessor
 | |
| 
 | |
| _SAMPLING_EPS = 1e-5
 | |
| 
 | |
| 
 | |
| class ErnieProcessor(BaseDataProcessor):
 | |
|     """
 | |
|     初始化模型实例。
 | |
| 
 | |
|     Args:
 | |
|         model_name_or_path (str): 模型名称或路径。
 | |
| 
 | |
|     Attributes:
 | |
|         model_name_or_path (str): 存储模型名称或路径。
 | |
|         decode_status (dict): 存储解码状态信息。
 | |
|         tokenizer (object): 存储分词器实例。
 | |
|         eos_token_ids (list): 存储结束符号的token ID列表。
 | |
|         eos_token_id_len (int): 存储结束符号的token ID列表的长度。
 | |
|         pad_token_id (int): 存储填充符号的token ID。
 | |
|     """
 | |
| 
 | |
|     def __init__(self, model_name_or_path, reasoning_parser_obj=None):
 | |
| 
 | |
|         self.model_name_or_path = model_name_or_path
 | |
|         data_processor_logger.info(f"model_name_or_path: {model_name_or_path}")
 | |
|         self._init_config()
 | |
| 
 | |
|         self.decode_status = dict()
 | |
|         self.thinking_parser_dict = dict()
 | |
|         self._load_tokenizer()
 | |
|         data_processor_logger.info(
 | |
|             f"tokenizer information: bos_token is {self.tokenizer.bos_token} \
 | |
|                                    {self.tokenizer.bos_token_id}, \
 | |
|                                    eos_token is {self.tokenizer.eos_token}, {self.tokenizer.eos_token_id} "
 | |
|         )
 | |
|         self.eos_token_ids = [self.tokenizer.eos_token_id]
 | |
|         self.eos_token_id_len = len(self.eos_token_ids)
 | |
|         self.pad_token_id = self.get_pad_id()
 | |
|         self.reasoning_parser = None
 | |
|         if reasoning_parser_obj:
 | |
|             self.reasoning_parser = reasoning_parser_obj(self.tokenizer)
 | |
| 
 | |
|     def _init_config(self):
 | |
|         self.use_hf_tokenizer = int(envs.FD_USE_HF_TOKENIZER) == 1
 | |
| 
 | |
|         # Generation config
 | |
|         try:
 | |
|             self.generation_config = GenerationConfig.from_pretrained(
 | |
|                 self.model_name_or_path)
 | |
|         except Exception as e:
 | |
|             data_processor_logger.warning(
 | |
|                 f"Can't find generation config, so it will not use "
 | |
|                 f"generation_config field in the model config, details={e}")
 | |
|             self.generation_config = None
 | |
| 
 | |
|     def process_request(self, request, max_model_len=None, **kwargs):
 | |
|         """
 | |
|         Preprocess the request
 | |
| 
 | |
|         Args:
 | |
|             request (Dict): may contain text and messages fields
 | |
| 
 | |
|         Returns:
 | |
|             bool: Whether preprocessing is successful
 | |
|             str: error message
 | |
|         """
 | |
|         request = self._apply_default_parameters(request)
 | |
|         if request.get("eos_token_ids") is None or len(
 | |
|                 request.eos_token_ids) == 0:
 | |
|             request.eos_token_ids = self.eos_token_ids
 | |
|         stop_sequences = request.get("stop", [])
 | |
|         if stop_sequences is not None and len(stop_sequences) != 0:
 | |
|             stop_seqs, stop_seqs_len = self.update_stop_seq(stop_sequences)
 | |
|             request.set("stop_token_ids", stop_seqs)
 | |
|             request.set("stop_seqs_len", stop_seqs_len)
 | |
| 
 | |
|         if request.prompt_token_ids is None or len(
 | |
|                 request.prompt_token_ids) == 0:
 | |
|             system = request.get("system")
 | |
|             if request.prompt is None and request.messages is None:
 | |
|                 raise ValueError(
 | |
|                     f"The request should have `input_ids`, `text` or `messages`: {request}.")
 | |
|             if request.prompt is not None or not request.raw_request:
 | |
|                 prompt = request.prompt if request.prompt is not None else request.messages[0]
 | |
|                 prompt = prompt[0] if isinstance(prompt, list) else prompt
 | |
|                 tokens = self.tokenizer.tokenize(prompt)
 | |
|                 token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
 | |
|                 request.prompt_token_ids = token_ids
 | |
|                 data_processor_logger.info(f"req_id:{request.request_id}, tokens:{tokens}, token_ids: {token_ids}")
 | |
|             else:
 | |
|                 request.prompt_token_ids = self.messages2ids(request.to_dict())
 | |
| 
 | |
|         if max_model_len is not None and len(
 | |
|                 request.prompt_token_ids) > max_model_len:
 | |
|             request.prompt_token_ids = request.prompt_token_ids[:
 | |
|                                                                 max_model_len -
 | |
|                                                                 1]
 | |
|         if request.get("max_tokens") is None:
 | |
|             request.set("max_tokens",
 | |
|                         max(1, max_model_len - len(request.prompt_token_ids)))
 | |
|         if request.get("temperature") < _SAMPLING_EPS:
 | |
|             # zero temperature is equivalent to greedy sampling
 | |
|             request.set("temperature", 1)
 | |
|         data_processor_logger.info(f"Processed request {request}")
 | |
|         return request
 | |
| 
 | |
|     def process_request_dict(self, request, max_model_len=None):
 | |
|         """
 | |
|         Preprocess the request
 | |
| 
 | |
|         Args:
 | |
|             request (Dict): may contain text and messages fields
 | |
| 
 | |
|         Returns:
 | |
|             bool: Whether preprocessing is successful
 | |
|             str: error message
 | |
|         """
 | |
|         request = self._apply_default_parameters(request)
 | |
|         if not request.get('eos_token_ids'):
 | |
|             request['eos_token_ids'] = self.eos_token_ids
 | |
|         # 处理stop_sequences
 | |
|         stop_sequences = request.get('stop', [])
 | |
|         if stop_sequences:
 | |
|             stop_seqs, stop_seqs_len = self.update_stop_seq(stop_sequences)
 | |
|             request['stop_token_ids'] = stop_seqs
 | |
|             request['stop_seqs_len'] = stop_seqs_len
 | |
| 
 | |
|         system = request.get("system")
 | |
|         # 处理prompt_token_ids
 | |
|         if not request.get('prompt_token_ids'):
 | |
|             if request.get('prompt') is None and request.get(
 | |
|                     'messages') is None:
 | |
|                 raise ValueError(
 | |
|                     f"Request must contain 'prompt_token_ids', 'prompt', or 'messages': {request}"
 | |
|                 )
 | |
|             if request.get('prompt'):
 | |
|                 prompt = request.get('prompt')
 | |
|                 prompt = prompt[0] if isinstance(prompt, list) else prompt
 | |
| 
 | |
|                 tokens = self.tokenizer.tokenize(prompt)
 | |
|                 token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
 | |
|                 request['prompt_token_ids'] = token_ids
 | |
|                 req_id = request.get("request_id", None)
 | |
|                 data_processor_logger.info(
 | |
|                     f"req_id:{req_id}, tokens:{tokens}, token_ids: {token_ids}"
 | |
|                 )
 | |
|             else:
 | |
|                 request['prompt_token_ids'] = self.messages2ids(request)
 | |
| 
 | |
|         # 截断超过长度限制的prompt
 | |
|         if max_model_len is not None and len(
 | |
|                 request['prompt_token_ids']) > max_model_len:
 | |
|             request['prompt_token_ids'] = request[
 | |
|                 'prompt_token_ids'][:max_model_len - 1]
 | |
|         if request.get("max_tokens") is None:
 | |
|             request["max_tokens"] = max(
 | |
|                 1, max_model_len - len(request['prompt_token_ids']))
 | |
|         if request.get("temperature") < _SAMPLING_EPS:
 | |
|             # zero temperature is equivalent to greedy sampling
 | |
|             request["temperature"] = 1
 | |
|         data_processor_logger.info(f"Processed request {request}")
 | |
| 
 | |
|         return request
 | |
| 
 | |
|     def process_response(self, response_dict, **kwargs):
 | |
|         """
 | |
|         Preprocess the response
 | |
| 
 | |
|         Args:
 | |
|             response_dict (Dict): response for engine, contain ids fields
 | |
| 
 | |
|         Returns:
 | |
|             Dict: response contain text fields
 | |
|         """
 | |
| 
 | |
|         req_id = response_dict.request_id
 | |
|         token_ids = response_dict.outputs.token_ids
 | |
| 
 | |
|         response_dict.usage = {
 | |
|             "completion_tokens": response_dict.outputs.index + 1
 | |
|         }
 | |
|         if token_ids[-1] == self.tokenizer.eos_token_id:
 | |
|             token_ids = token_ids[:-1]
 | |
|         full_text = self.tokenizer.decode(token_ids)
 | |
|         if self.reasoning_parser:
 | |
|             reasoning_content, text = self.reasoning_parser.extract_reasoning_content(
 | |
|                 full_text, response_dict)
 | |
|             response_dict.outputs.text = text
 | |
|             response_dict.outputs.reasoning_content = reasoning_content
 | |
|         else:
 | |
|             response_dict.outputs.text = full_text
 | |
|         data_processor_logger.info(f"req_id:{req_id}, token)ids: {token_ids}")
 | |
|         if response_dict.outputs.text == "" and \
 | |
|                 response_dict.outputs.reasoning_content == "" and \
 | |
|                 response_dict.outputs.tool_call_content == []:
 | |
|             return None
 | |
|         return response_dict
 | |
| 
 | |
|     def process_response_dict(self, response_dict, stream, **kwargs):
 | |
|         """
 | |
|         Preprocess the response
 | |
| 
 | |
|         Args:
 | |
|             response_dict (Dict): response for engine, contain ids fields
 | |
| 
 | |
|         Returns:
 | |
|             Dict: response contain text fields
 | |
|         """
 | |
|         if stream:
 | |
|             return self.process_response_dict_streaming(
 | |
|                 response_dict, **kwargs)
 | |
|         else:
 | |
|             return self.process_response_dict_normal(response_dict, **kwargs)
 | |
| 
 | |
|     def process_response_dict_normal(self, response_dict, **kwargs):
 | |
|         """
 | |
|         Preprocess the response
 | |
| 
 | |
|         Args:
 | |
|             response_dict (Dict): response for engine, contain ids fields
 | |
| 
 | |
|         Returns:
 | |
|             Dict: response contain text fields
 | |
|         """
 | |
|         token_ids = response_dict["outputs"]["token_ids"]
 | |
|         is_end = response_dict["finished"]
 | |
|         req_id = response_dict["request_id"]
 | |
|         if is_end and len(token_ids) > 0:
 | |
|             if token_ids[-1] == self.tokenizer.eos_token_id:
 | |
|                 token_ids = token_ids[:-1]
 | |
|         delta_text, _, previous_texts = self.ids2tokens(token_ids, req_id)
 | |
|         if is_end:
 | |
|             full_text = previous_texts + delta_text
 | |
|             if self.reasoning_parser:
 | |
|                 reasoning_content, text = self.reasoning_parser.extract_reasoning_content(
 | |
|                     full_text, response_dict)
 | |
|                 response_dict["outputs"]["text"] = text
 | |
|                 response_dict["outputs"][
 | |
|                     "reasoning_content"] = reasoning_content
 | |
|             else:
 | |
|                 response_dict["outputs"]["text"] = full_text
 | |
|             data_processor_logger.info(
 | |
|                 f"req_id:{req_id}, decode_status: {self.decode_status[req_id]}"
 | |
|             )
 | |
|             del self.decode_status[req_id]
 | |
|         return response_dict
 | |
| 
 | |
|     def process_response_dict_streaming(self, response_dict, **kwargs):
 | |
|         """
 | |
|         Preprocess the response streaming
 | |
| 
 | |
|         Args:
 | |
|             response_dict (Dict): response for engine, contain ids fields
 | |
| 
 | |
|         Returns:
 | |
|             Dict: response contain text fields
 | |
|         """
 | |
|         enable_thinking = kwargs.get("enable_thinking")
 | |
|         is_end = response_dict["finished"]
 | |
|         req_id = response_dict["request_id"]
 | |
|         token_ids = response_dict["outputs"]["token_ids"]
 | |
| 
 | |
|         if is_end and len(token_ids) > 0:
 | |
|             if token_ids[-1] == self.tokenizer.eos_token_id:
 | |
|                 token_ids = token_ids[:-1]
 | |
|         delta_text, previous_token_ids, previous_texts = self.ids2tokens(
 | |
|             token_ids, req_id)
 | |
|         if enable_thinking and self.reasoning_parser:
 | |
|             reasoning_content, text = self.reasoning_parser.extract_reasoning_content_streaming(
 | |
|                 previous_texts, previous_texts + delta_text, delta_text,
 | |
|                 previous_token_ids, previous_token_ids + token_ids, token_ids)
 | |
|             response_dict["outputs"]["text"] = text
 | |
|             response_dict["outputs"]["reasoning_content"] = reasoning_content
 | |
|         else:
 | |
|             response_dict["outputs"]["text"] = delta_text
 | |
|         if is_end:
 | |
|             data_processor_logger.info(
 | |
|                 f"req_id:{req_id}, decode_status: {self.decode_status[req_id]}"
 | |
|             )
 | |
|             del self.decode_status[req_id]
 | |
|         return response_dict
 | |
| 
 | |
|     def messages2ids(self, request_or_messages):
 | |
|         """
 | |
|         Convert multi-turn messages into ID sequences.
 | |
| 
 | |
|         Args:
 | |
|             request_or_messages: Either a request dict containing 'messages' field,
 | |
|                                 or a list of message dicts directly
 | |
| 
 | |
|         Returns:
 | |
|             List of token IDs as strings (converted from token objects)
 | |
|         """
 | |
|         if self.tokenizer.chat_template is None:
 | |
|             raise ValueError("This model does not support chat_template.")
 | |
|         spliced_message = self.tokenizer.apply_chat_template(
 | |
|             request_or_messages,
 | |
|             tokenize=False,
 | |
|             split_special_tokens=False,
 | |
|             add_special_tokens=False)
 | |
| 
 | |
|         req_id = None
 | |
|         if isinstance(request_or_messages, dict):
 | |
|             req_id = request_or_messages.get("request_id", None)
 | |
|         tokens = self.tokenizer.tokenize(spliced_message)
 | |
|         token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
 | |
|         data_processor_logger.info(
 | |
|             f"req_id:{req_id}, tokens:{tokens}, token_ids: {token_ids}")
 | |
|         return token_ids
 | |
| 
 | |
|     def ids2tokens(self, token_id, task_id):
 | |
|         """
 | |
|         token ids to strings
 | |
| 
 | |
|         Args:
 | |
|             token_ids (List[int]): token ids
 | |
|                         task_id (str): task id
 | |
| 
 | |
|         Returns:
 | |
|             List[str]: strings
 | |
|         """
 | |
| 
 | |
|         if task_id not in self.decode_status:
 | |
|             # prefix offset & read offset & history token ids & history token strings
 | |
|             self.decode_status[task_id] = [0, 0, [], ""]
 | |
| 
 | |
|         prefix_offset = self.decode_status[task_id][0]
 | |
|         read_offset = self.decode_status[task_id][1]
 | |
|         previous_token_ids = self.decode_status[task_id][2]
 | |
|         previous_texts = self.decode_status[task_id][3]
 | |
|         decode_str, prefix_offset, read_offset = self.tokenizer.decode_token(
 | |
|             previous_token_ids + token_id, prefix_offset, read_offset)
 | |
|         self.decode_status[task_id][0] = prefix_offset
 | |
|         self.decode_status[task_id][1] = read_offset
 | |
|         self.decode_status[task_id][2] += token_id
 | |
|         self.decode_status[task_id][3] += decode_str
 | |
| 
 | |
|         return decode_str, previous_token_ids, previous_texts
 | |
| 
 | |
|     def _load_tokenizer(self):
 | |
|         """
 | |
|         load tokenizer
 | |
| 
 | |
|         Returns:
 | |
|             tokenizer (AutoTokenizer)
 | |
|         """
 | |
|         vocab_file_names = [
 | |
|             "tokenizer.model", "spm.model", "ernie_token_100k.model"
 | |
|         ]
 | |
|         for i in range(len(vocab_file_names)):
 | |
|             if os.path.exists(
 | |
|                     os.path.join(self.model_name_or_path,
 | |
|                                  vocab_file_names[i])):
 | |
|                 ErnieBotTokenizer.resource_files_names[
 | |
|                     "vocab_file"] = vocab_file_names[i]
 | |
|                 break
 | |
|         self.tokenizer = ErnieBotTokenizer.from_pretrained(
 | |
|             self.model_name_or_path)
 | |
| 
 | |
|     def get_pad_id(self):
 | |
|         """
 | |
|         get pad_token_id, if not pad_token_id, use eos_token
 | |
| 
 | |
|         Returns:
 | |
|             int: pad_token_id
 | |
|         """
 | |
|         # if isinstance(self.tokenizer, (LlamaTokenizer, Llama3Tokenizer)) and not self.tokenizer.pad_token_id:
 | |
|         #     return self.tokenizer.eos_token
 | |
|         return self.tokenizer.pad_token_id
 | |
| 
 | |
|     def pad_batch_data(self,
 | |
|                        insts,
 | |
|                        pad_id=0,
 | |
|                        return_seq_len=False,
 | |
|                        return_array=True,
 | |
|                        pad_style="right"):
 | |
|         """Pad the instances to the max sequence length in batch."""
 | |
|         if len(insts) == 0:
 | |
|             padded_insts = np.array([[]],
 | |
|                                     dtype=np.int64) if return_array else [[]]
 | |
|             if return_seq_len:
 | |
|                 seq_len = np.array([], dtype=np.int64) if return_array else []
 | |
|                 return padded_insts, seq_len
 | |
|             return padded_insts
 | |
| 
 | |
|         max_len = max(map(len, insts))
 | |
|         if pad_style == "left":
 | |
|             padded_insts = [[pad_id] * (max_len - len(inst)) + list(inst)
 | |
|                             for inst in insts]
 | |
|         else:
 | |
|             padded_insts = [
 | |
|                 list(inst) + [pad_id] * (max_len - len(inst)) for inst in insts
 | |
|             ]
 | |
|         if return_array:
 | |
|             padded_insts = np.array(padded_insts,
 | |
|                                     dtype=np.int64).reshape([-1, max_len])
 | |
| 
 | |
|         if return_seq_len:
 | |
|             seq_len = [len(inst) for inst in insts]
 | |
|             if return_array:
 | |
|                 seq_len = np.array(seq_len, dtype=np.int64).reshape(-1, 1)
 | |
|             return padded_insts, seq_len
 | |
|         return padded_insts
 | |
| 
 | |
|     def update_stop_seq(self, stop_sequences):
 | |
|         """
 | |
|         Update stop sequences from request.
 | |
|         """
 | |
|         stop_seqs = []
 | |
|         for seq in stop_sequences:
 | |
|             if seq != self.tokenizer.eos_token_id:
 | |
|                 stop_seqs.append(
 | |
|                     self.tokenizer.convert_tokens_to_ids(
 | |
|                         self.tokenizer.tokenize(seq)))
 | |
|         stop_seqs, stop_seqs_len = self.pad_batch_data(stop_seqs,
 | |
|                                                        pad_id=-1,
 | |
|                                                        return_seq_len=True,
 | |
|                                                        return_array=False)
 | |
|         data_processor_logger.debug(
 | |
|             f"processed stop_seqs: {stop_seqs}, {stop_seqs_len}")
 | |
|         return stop_seqs, stop_seqs_len
 |