Files
FastDeploy/benchmarks/backend_request_func.py
ophilia-lee 70aa7423f8 benchmark工具适配SGLang框架 (#4607)
* benchmark工具适配SGLang框架

* benchmark工具适配SGLang框架

* benchmark工具适配SGLang框架
2025-10-27 18:52:56 +08:00

718 lines
28 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
# This file is modified from https://github.com/vllm-project/vllm/blob/main/benchmarks/backend_request_func.py
import io
import json
import os
import sys
import time
import traceback
from dataclasses import dataclass, field
from typing import Optional
import aiohttp
from tqdm.asyncio import tqdm
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)
@dataclass
class RequestFuncInput:
"""Input for requesting LLMs via API"""
no: int
prompt: str
history_QA: Optional[dict]
hyper_parameters: dict
api_url: str
prompt_len: int
output_len: int
model: str
model_name: Optional[str] = None
logprobs: Optional[int] = None
extra_body: Optional[dict] = None
multi_modal_content: Optional[dict] = None
ignore_eos: bool = False
language: Optional[str] = None
debug: bool = False
@dataclass
class RequestFuncOutput:
"""Output for requesting LLMs via API"""
no: int = 0
request_id: str = ""
generated_text: str = ""
reasoning_content: str = ""
success: bool = False
latency: float = 0.0
end_timestamp: float = 0.0 # 模型完全返回的时间戳(秒, perf_counter基准
output_tokens: int = 0
ttft: float = 0.0 # Time to first token
arrival_time: list = field(default_factory=list) # arrival_time
itl: list = field(default_factory=list) # list of inter-token latencies
tpot: float = 0.0 # avg next-token latencies
prompt_len: int = 0
prompt_tokens: int = 0 # 推理侧返回输入token数
error: str = ""
async def async_request_eb_openai_chat_completions(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
"""Request an LLM using EB OpenAI"""
api_url = request_func_input.api_url
assert api_url.endswith(("completions", "profile")), "OpenAI Chat Completions API URL must end with 'completions'."
async with aiohttp.ClientSession(trust_env=True, timeout=AIOHTTP_TIMEOUT) as session:
content = [{"type": "text", "text": request_func_input.prompt}]
if request_func_input.multi_modal_content:
content.append(request_func_input.multi_modal_content)
payload = {
"model": request_func_input.model,
"messages": request_func_input.history_QA,
"stream": True,
"stream_options": {
"include_usage": True,
"continuous_usage_stats": True,
},
}
# 超参由yaml传入
payload.update(request_func_input.hyper_parameters)
if request_func_input.ignore_eos:
payload["ignore_eos"] = request_func_input.ignore_eos
if request_func_input.debug:
print(f"payload:{json.dumps(payload, ensure_ascii=False)}")
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
}
output = RequestFuncOutput()
output.prompt_len = 0
output.no = request_func_input.no
request_id = "None"
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload, headers=headers) as response:
data = {}
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
if chunk != "[DONE]":
#print("####chunk:", chunk, type(chunk))
timestamp = time.perf_counter()
data = json.loads(chunk)
if request_id == "None" and "id" in data:
request_id = data["id"]
if choices := data.get("choices"):
content = choices[0]["delta"].get("content")
reason_content = choices[0]["delta"].get("reasoning_content")
# First token
if ttft == 0.0:
ttft = timestamp - st
output.ttft = ttft
# cached_tokens
if data["usage"] and data["usage"].get("prompt_tokens_details", {}):
output.prompt_len = (
data["usage"].get("prompt_tokens_details", {}).get("cached_tokens", 0)
)
else:
output.prompt_len = 0
# Decoding phase
else:
output.itl.append(timestamp - most_recent_timestamp)
output.generated_text += content or ""
output.reasoning_content += reason_content or ""
output.arrival_time.append(choices[0].get("arrival_time", timestamp))
elif usage := data.get("usage", {}):
output.output_tokens = usage.get("completion_tokens", 0)
output.prompt_tokens = usage.get("prompt_tokens", 0)
most_recent_timestamp = timestamp
# output.generated_text = generated_text
# 在流式结束时,记录最后一个 chunk 收到的时间戳
output.end_timestamp = most_recent_timestamp
if output.generated_text.strip() == "":
output.success = False
output.error = "No generated text found!"
else:
output.success = True
output.latency = most_recent_timestamp - st
else:
error_text = await response.text()
print(
"####error response:",
error_text,
"####payload:",
payload,
)
output.error = error_text or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
output.request_id = request_id
# 保存失败请求结果
if not output.success:
with open("error_output.txt", "a") as f:
f.write(str(output) + "\n")
if pbar:
pbar.update(1)
if request_func_input.debug:
print("#####final_output:", output)
return output
async def async_request_eb_openai_completions(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
"""Request an LLM using EB OpenAI"""
api_url = request_func_input.api_url
assert api_url.endswith(
("completions", "profile")
), "OpenAI Completions API URL must end with 'completions' or 'profile'."
async with aiohttp.ClientSession(trust_env=True, timeout=AIOHTTP_TIMEOUT) as session:
payload = {
"model": request_func_input.model,
"prompt": request_func_input.prompt,
"stream": True,
"stream_options": {
"include_usage": True,
"continuous_usage_stats": True,
},
}
# 超参由yaml传入
payload.update(request_func_input.hyper_parameters)
if request_func_input.ignore_eos:
payload["ignore_eos"] = request_func_input.ignore_eos
if request_func_input.debug:
print("payload:", json.dumps(payload, ensure_ascii=False))
headers = {
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
"Content-Type": "application/json",
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
output.no = request_func_input.no
generated_text = ""
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload, headers=headers) as response:
if response.status == 200:
first_chunk_received = False
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
if chunk != "[DONE]":
# print("####chunk:", chunk, chunk.usage)
timestamp = time.perf_counter()
data = json.loads(chunk)
# NOTE: Some completion API might have a last
# usage summary response without a token so we
# want to check a token was generated
if choices := data.get("choices"):
# Note that text could be empty here
# e.g. for special tokens
text = choices[0].get("text")
# First token
if not first_chunk_received:
first_chunk_received = True
ttft = timestamp - st
output.ttft = ttft
# Decoding phase
else:
output.itl.append(timestamp - most_recent_timestamp)
generated_text += text or ""
most_recent_timestamp = timestamp
output.arrival_time.append(choices[0].get("arrival_time", timestamp))
elif usage := data.get("usage"):
output.prompt_tokens = usage.get("prompt_tokens")
output.output_tokens = usage.get("completion_tokens")
if first_chunk_received:
output.success = True
else:
output.success = False
output.error = (
"Never received a valid chunk to calculate TTFT." "This response will be marked as failed!"
)
output.generated_text = generated_text
output.latency = most_recent_timestamp - st
if output.generated_text == "":
output.success = False
output.error = "No generated text found!"
else:
output.success = True
else:
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
if request_func_input.debug:
print(f"final_output:{output}")
if pbar:
pbar.update(1)
return output
async def async_request_tgi(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
"""Request an LLM using the TGI API"""
api_url = request_func_input.api_url
assert api_url.endswith("generate_stream")
async with aiohttp.ClientSession(trust_env=True, timeout=AIOHTTP_TIMEOUT) as session:
params = {
"max_new_tokens": request_func_input.output_len,
"do_sample": True,
"temperature": 0.01, # TGI does not accept 0.0 temperature.
"top_p": 0.99, # TGI does not accept 1.0 top_p.
"truncate": request_func_input.prompt_len,
"ignore_eos_token": request_func_input.ignore_eos,
}
payload = {
"inputs": request_func_input.prompt,
"parameters": params,
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
if request_func_input.ignore_eos:
output.output_tokens = request_func_input.output_len
else:
output.output_tokens = None
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk_bytes = chunk_bytes.decode("utf-8")
# NOTE: Sometimes TGI returns a ping response without
# any data, we should skip it.
if chunk_bytes.startswith(":"):
continue
chunk = chunk_bytes.removeprefix("data:")
data = json.loads(chunk)
timestamp = time.perf_counter()
# First token
if ttft == 0.0:
ttft = time.perf_counter() - st
output.ttft = ttft
# Decoding phase
else:
output.itl.append(timestamp - most_recent_timestamp)
most_recent_timestamp = timestamp
output.arrival_time.append(data["arrival_time"])
output.latency = most_recent_timestamp - st
output.success = True
output.generated_text = data["generated_text"]
else:
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
if pbar:
pbar.update(1)
return output
async def async_request_trt_llm(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
"""Request an LLM using TRT's llm_server"""
api_url = request_func_input.api_url
assert api_url.endswith("generate_stream")
async with aiohttp.ClientSession(trust_env=True, timeout=AIOHTTP_TIMEOUT) as session:
payload = {
"accumulate_tokens": True,
"text_input": request_func_input.prompt,
"temperature": 0.0,
"top_p": 1.0,
"max_tokens": request_func_input.output_len,
"stream": True,
}
if request_func_input.ignore_eos:
payload["min_length"] = request_func_input.output_len
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = chunk_bytes.decode("utf-8").removeprefix("data:")
data = json.loads(chunk)
output.generated_text += data["text_output"]
timestamp = time.perf_counter()
# First token
if ttft == 0.0:
ttft = timestamp - st
output.ttft = ttft
# Decoding phase
else:
output.itl.append(timestamp - most_recent_timestamp)
most_recent_timestamp = timestamp
output.latency = most_recent_timestamp - st
output.success = True
else:
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
if pbar:
pbar.update(1)
return output
async def async_request_deepspeed_mii(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
"""Request an LLM using Deepspeed MII"""
async with aiohttp.ClientSession(trust_env=True, timeout=AIOHTTP_TIMEOUT) as session:
payload = {
"prompt": request_func_input.prompt,
"max_tokens": request_func_input.output_len,
"temperature": 0.01, # deepspeed-mii does not accept 0.0 temp.
"top_p": 1.0,
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
# NOTE: DeepSpeed-MII doesn't support streaming as of Jan 28 2024,
# will use 0 as placeholder.
# See https://github.com/microsoft/DeepSpeed-MII/pull/311
output.ttft = 0
st = time.perf_counter()
try:
async with session.post(url=request_func_input.api_url, json=payload) as response:
if response.status == 200:
parsed_resp = await response.json()
output.latency = time.perf_counter() - st
if "choices" in parsed_resp:
output.generated_text = parsed_resp["choices"][0]["text"]
elif "text" in parsed_resp:
output.generated_text = parsed_resp["text"][0]
else:
output.error = "Unexpected response format: " "neither 'choices' nor 'text' found"
output.success = False
output.success = True
else:
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
if pbar:
pbar.update(1)
return output
async def async_request_openai_completions(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
"""Request an LLM using OpenAI"""
api_url = request_func_input.api_url
assert api_url.endswith(
("completions", "profile")
), "OpenAI Completions API URL must end with 'completions' or 'profile'."
async with aiohttp.ClientSession(trust_env=True, timeout=AIOHTTP_TIMEOUT) as session:
payload = {
"model": (request_func_input.model_name if request_func_input.model_name else request_func_input.model),
"prompt": request_func_input.prompt,
# "temperature": 0.0,
"max_tokens": request_func_input.output_len,
"logprobs": request_func_input.logprobs,
"stream": True,
# "stream_options": {
# "include_usage": True,
# },
}
if request_func_input.ignore_eos:
payload["ignore_eos"] = request_func_input.ignore_eos
headers = {"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
generated_text = ""
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload, headers=headers) as response:
if response.status == 200:
first_chunk_received = False
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
if chunk != "[DONE]":
# print("####chunk:", chunk, type(chunk))
data = json.loads(chunk)
# NOTE: Some completion API might have a last
# usage summary response without a token so we
# want to check a token was generated
if choices := data.get("choices"):
# Note that text could be empty here
# e.g. for special tokens
text = choices[0].get("text")
timestamp = time.perf_counter()
# First token
if not first_chunk_received:
first_chunk_received = True
ttft = time.perf_counter() - st
output.ttft = ttft
# Decoding phase
else:
output.itl.append(timestamp - most_recent_timestamp)
most_recent_timestamp = timestamp
generated_text += text or ""
elif usage := data.get("usage"):
output.output_tokens = usage.get("completion_tokens")
if first_chunk_received:
output.success = True
else:
output.success = False
output.error = (
"Never received a valid chunk to calculate TTFT." "This response will be marked as failed!"
)
output.generated_text = generated_text
output.latency = most_recent_timestamp - st
else:
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
if pbar:
pbar.update(1)
return output
async def async_request_openai_audio(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
"""Request an LLM using OpenAI"""
# Lazy import without PlaceholderModule to avoid vllm dep.
import soundfile
api_url = request_func_input.api_url
assert api_url.endswith(
("transcriptions", "translations")
), "OpenAI Chat Completions API URL must end with 'transcriptions' "
"or `translations`."
async with aiohttp.ClientSession(trust_env=True, timeout=AIOHTTP_TIMEOUT) as session:
content = [{"type": "text", "text": request_func_input.prompt}]
payload = {
"model": (request_func_input.model_name if request_func_input.model_name else request_func_input.model),
"temperature": 0.0,
"max_completion_tokens": request_func_input.output_len,
"stream": True,
"language": "en",
# Flattened due to multipart/form-data
"stream_include_usage": True,
"stream_continuous_usage_stats": True,
}
if request_func_input.extra_body:
payload.update(request_func_input.extra_body)
headers = {
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
}
# Send audio file
def to_bytes(y, sr):
buffer = io.BytesIO()
soundfile.write(buffer, y, sr, format="WAV")
buffer.seek(0)
return buffer
with to_bytes(*request_func_input.multi_modal_content["audio"]) as f:
form = aiohttp.FormData()
form.add_field("file", f, content_type="audio/wav")
for key, value in payload.items():
form.add_field(key, str(value))
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
generated_text = ""
ttft = 0.0
st = time.perf_counter()
most_recent_timestamp = st
try:
async with session.post(url=api_url, data=form, headers=headers) as response:
if response.status == 200:
async for chunk_bytes in response.content:
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
chunk = chunk_bytes.decode("utf-8").removeprefix("data: ")
if chunk != "[DONE]":
timestamp = time.perf_counter()
data = json.loads(chunk)
if choices := data.get("choices"):
content = choices[0]["delta"].get("content")
# First token
if ttft == 0.0:
ttft = timestamp - st
output.ttft = ttft
# Decoding phase
else:
output.itl.append(timestamp - most_recent_timestamp)
generated_text += content or ""
elif usage := data.get("usage"):
output.output_tokens = usage.get("completion_tokens")
most_recent_timestamp = timestamp
output.generated_text = generated_text
output.success = True
output.latency = most_recent_timestamp - st
else:
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
if pbar:
pbar.update(1)
return output
ASYNC_REQUEST_FUNCS = {
"tgi": async_request_tgi,
"vllm": async_request_openai_completions,
"lmdeploy": async_request_openai_completions,
"deepspeed-mii": async_request_deepspeed_mii,
"openai": async_request_eb_openai_completions,
"openai-chat": async_request_eb_openai_chat_completions,
"openai-audio": async_request_openai_audio,
"tensorrt-llm": async_request_trt_llm,
"scalellm": async_request_openai_completions,
"sglang": async_request_openai_completions,
}
OPENAI_COMPATIBLE_BACKENDS = [
k
for k, v in ASYNC_REQUEST_FUNCS.items()
if v
in (
async_request_openai_completions,
async_request_eb_openai_chat_completions,
)
]