mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 16:22:57 +08:00

* Imporve OCR Readme * Improve OCR Readme * Improve OCR Readme * Improve OCR Readme * Improve OCR Readme * Add Initialize function to PP-OCR * Add Initialize function to PP-OCR * Add Initialize function to PP-OCR * Make all the model links come from PaddleOCR * Improve OCR readme * Improve OCR readme * Improve OCR readme * Improve OCR readme * Add Readme for vision results * Add Readme for vision results * Add Readme for vision results * Add Readme for vision results * Add Readme for vision results * Add Readme for vision results * Add Readme for vision results * Add Readme for vision results * Add Readme for vision results * Add Readme for vision results * Add check for label file in postprocess of Rec model * Add check for label file in postprocess of Rec model * Add check for label file in postprocess of Rec model * Add check for label file in postprocess of Rec model * Add check for label file in postprocess of Rec model * Add check for label file in postprocess of Rec model * Add comments to create API docs * Improve OCR comments * Rename OCR and add comments * Make sure previous python example works * Make sure previous python example works Co-authored-by: Jason <jiangjiajun@baidu.com>
204 lines
5.9 KiB
C++
204 lines
5.9 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/ocr/ppocr/recognizer.h"
|
|
#include "fastdeploy/utils/perf.h"
|
|
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_utils.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace ocr {
|
|
|
|
std::vector<std::string> ReadDict(const std::string& path) {
|
|
std::ifstream in(path);
|
|
std::string line;
|
|
std::vector<std::string> m_vec;
|
|
if (in) {
|
|
while (getline(in, line)) {
|
|
m_vec.push_back(line);
|
|
}
|
|
} else {
|
|
std::cout << "no such label file: " << path << ", exit the program..."
|
|
<< std::endl;
|
|
exit(1);
|
|
}
|
|
return m_vec;
|
|
}
|
|
|
|
Recognizer::Recognizer() {}
|
|
|
|
Recognizer::Recognizer(const std::string& model_file,
|
|
const std::string& params_file,
|
|
const std::string& label_path,
|
|
const RuntimeOption& custom_option,
|
|
const ModelFormat& model_format) {
|
|
if (model_format == ModelFormat::ONNX) {
|
|
valid_cpu_backends = {Backend::ORT,
|
|
Backend::OPENVINO};
|
|
valid_gpu_backends = {Backend::ORT, Backend::TRT};
|
|
} else {
|
|
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::OPENVINO};
|
|
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
|
|
}
|
|
|
|
runtime_option = custom_option;
|
|
runtime_option.model_format = model_format;
|
|
runtime_option.model_file = model_file;
|
|
runtime_option.params_file = params_file;
|
|
|
|
initialized = Initialize();
|
|
|
|
// init label_lsit
|
|
label_list = ReadDict(label_path);
|
|
label_list.insert(label_list.begin(), "#"); // blank char for ctc
|
|
label_list.push_back(" ");
|
|
}
|
|
|
|
// Init
|
|
bool Recognizer::Initialize() {
|
|
// pre&post process parameters
|
|
rec_batch_num = 1;
|
|
rec_img_h = 48;
|
|
rec_img_w = 320;
|
|
rec_image_shape = {3, rec_img_h, rec_img_w};
|
|
|
|
mean = {0.5f, 0.5f, 0.5f};
|
|
scale = {0.5f, 0.5f, 0.5f};
|
|
is_scale = true;
|
|
|
|
if (!InitRuntime()) {
|
|
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void OcrRecognizerResizeImage(Mat* mat, const float& wh_ratio,
|
|
const std::vector<int>& rec_image_shape) {
|
|
int imgC, imgH, imgW;
|
|
imgC = rec_image_shape[0];
|
|
imgH = rec_image_shape[1];
|
|
imgW = rec_image_shape[2];
|
|
|
|
imgW = int(imgH * wh_ratio);
|
|
|
|
float ratio = float(mat->Width()) / float(mat->Height());
|
|
int resize_w;
|
|
if (ceilf(imgH * ratio) > imgW)
|
|
resize_w = imgW;
|
|
else
|
|
resize_w = int(ceilf(imgH * ratio));
|
|
|
|
Resize::Run(mat, resize_w, imgH);
|
|
|
|
std::vector<float> value = {127, 127, 127};
|
|
Pad::Run(mat, 0, 0, 0, int(imgW - mat->Width()), value);
|
|
}
|
|
|
|
bool Recognizer::Preprocess(Mat* mat, FDTensor* output,
|
|
const std::vector<int>& rec_image_shape) {
|
|
int imgH = rec_image_shape[1];
|
|
int imgW = rec_image_shape[2];
|
|
float wh_ratio = imgW * 1.0 / imgH;
|
|
|
|
float ori_wh_ratio = mat->Width() * 1.0 / mat->Height();
|
|
wh_ratio = std::max(wh_ratio, ori_wh_ratio);
|
|
|
|
OcrRecognizerResizeImage(mat, wh_ratio, rec_image_shape);
|
|
|
|
Normalize::Run(mat, mean, scale, true);
|
|
|
|
HWC2CHW::Run(mat);
|
|
Cast::Run(mat, "float");
|
|
|
|
mat->ShareWithTensor(output);
|
|
output->shape.insert(output->shape.begin(), 1);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Recognizer::Postprocess(FDTensor& infer_result,
|
|
std::tuple<std::string, float>* rec_result) {
|
|
std::vector<int64_t> output_shape = infer_result.shape;
|
|
FDASSERT(output_shape[0] == 1, "Only support batch =1 now.");
|
|
|
|
float* out_data = static_cast<float*>(infer_result.Data());
|
|
|
|
std::string str_res;
|
|
int argmax_idx;
|
|
int last_index = 0;
|
|
float score = 0.f;
|
|
int count = 0;
|
|
float max_value = 0.0f;
|
|
|
|
for (int n = 0; n < output_shape[1]; n++) {
|
|
argmax_idx = int(
|
|
std::distance(&out_data[n * output_shape[2]],
|
|
std::max_element(&out_data[n * output_shape[2]],
|
|
&out_data[(n + 1) * output_shape[2]])));
|
|
|
|
max_value = float(*std::max_element(&out_data[n * output_shape[2]],
|
|
&out_data[(n + 1) * output_shape[2]]));
|
|
|
|
if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
|
|
score += max_value;
|
|
count += 1;
|
|
if(argmax_idx > label_list.size()){
|
|
FDERROR << "The output index: " << argmax_idx << " is larger than the size of label_list: "
|
|
<< label_list.size() << ". Please check the label file!" << std::endl;
|
|
return false;
|
|
}
|
|
str_res += label_list[argmax_idx];
|
|
}
|
|
last_index = argmax_idx;
|
|
}
|
|
score /= count;
|
|
|
|
std::get<0>(*rec_result) = str_res;
|
|
std::get<1>(*rec_result) = score;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Recognizer::Predict(cv::Mat* img,
|
|
std::tuple<std::string, float>* rec_result) {
|
|
Mat mat(*img);
|
|
|
|
std::vector<FDTensor> input_tensors(1);
|
|
|
|
if (!Preprocess(&mat, &input_tensors[0], rec_image_shape)) {
|
|
FDERROR << "Failed to preprocess input image." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
input_tensors[0].name = InputInfoOfRuntime(0).name;
|
|
std::vector<FDTensor> output_tensors;
|
|
|
|
if (!Infer(input_tensors, &output_tensors)) {
|
|
FDERROR << "Failed to inference." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (!Postprocess(output_tensors[0], rec_result)) {
|
|
FDERROR << "Failed to post process." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
} // namesapce ocr
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|