Files
FastDeploy/fastdeploy/vision/ocr/ppocr/recognizer.cc
yunyaoXYY 24317e1a14 [Doc] Rename PPOCRSystem to PPOCR and update comments. (#395)
* Imporve OCR Readme

* Improve OCR Readme

* Improve OCR Readme

* Improve OCR Readme

* Improve OCR Readme

* Add Initialize function to PP-OCR

* Add Initialize function to PP-OCR

* Add Initialize function to PP-OCR

* Make all the model links come from PaddleOCR

* Improve OCR readme

* Improve OCR readme

* Improve OCR readme

* Improve OCR readme

* Add Readme for vision results

* Add Readme for vision results

* Add Readme for vision results

* Add Readme for vision results

* Add Readme for vision results

* Add Readme for vision results

* Add Readme for vision results

* Add Readme for vision results

* Add Readme for vision results

* Add Readme for vision results

* Add check for label file in postprocess of Rec model

* Add check for label file in postprocess of Rec model

* Add check for label file in postprocess of Rec model

* Add check for label file in postprocess of Rec model

* Add check for label file in postprocess of Rec model

* Add check for label file in postprocess of Rec model

* Add comments to create API docs

* Improve OCR comments

* Rename OCR and add comments

* Make sure previous python example works

* Make sure previous python example works

Co-authored-by: Jason <jiangjiajun@baidu.com>
2022-10-19 17:21:48 +08:00

204 lines
5.9 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/ocr/ppocr/recognizer.h"
#include "fastdeploy/utils/perf.h"
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_utils.h"
namespace fastdeploy {
namespace vision {
namespace ocr {
std::vector<std::string> ReadDict(const std::string& path) {
std::ifstream in(path);
std::string line;
std::vector<std::string> m_vec;
if (in) {
while (getline(in, line)) {
m_vec.push_back(line);
}
} else {
std::cout << "no such label file: " << path << ", exit the program..."
<< std::endl;
exit(1);
}
return m_vec;
}
Recognizer::Recognizer() {}
Recognizer::Recognizer(const std::string& model_file,
const std::string& params_file,
const std::string& label_path,
const RuntimeOption& custom_option,
const ModelFormat& model_format) {
if (model_format == ModelFormat::ONNX) {
valid_cpu_backends = {Backend::ORT,
Backend::OPENVINO};
valid_gpu_backends = {Backend::ORT, Backend::TRT};
} else {
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::OPENVINO};
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
}
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
initialized = Initialize();
// init label_lsit
label_list = ReadDict(label_path);
label_list.insert(label_list.begin(), "#"); // blank char for ctc
label_list.push_back(" ");
}
// Init
bool Recognizer::Initialize() {
// pre&post process parameters
rec_batch_num = 1;
rec_img_h = 48;
rec_img_w = 320;
rec_image_shape = {3, rec_img_h, rec_img_w};
mean = {0.5f, 0.5f, 0.5f};
scale = {0.5f, 0.5f, 0.5f};
is_scale = true;
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
return true;
}
void OcrRecognizerResizeImage(Mat* mat, const float& wh_ratio,
const std::vector<int>& rec_image_shape) {
int imgC, imgH, imgW;
imgC = rec_image_shape[0];
imgH = rec_image_shape[1];
imgW = rec_image_shape[2];
imgW = int(imgH * wh_ratio);
float ratio = float(mat->Width()) / float(mat->Height());
int resize_w;
if (ceilf(imgH * ratio) > imgW)
resize_w = imgW;
else
resize_w = int(ceilf(imgH * ratio));
Resize::Run(mat, resize_w, imgH);
std::vector<float> value = {127, 127, 127};
Pad::Run(mat, 0, 0, 0, int(imgW - mat->Width()), value);
}
bool Recognizer::Preprocess(Mat* mat, FDTensor* output,
const std::vector<int>& rec_image_shape) {
int imgH = rec_image_shape[1];
int imgW = rec_image_shape[2];
float wh_ratio = imgW * 1.0 / imgH;
float ori_wh_ratio = mat->Width() * 1.0 / mat->Height();
wh_ratio = std::max(wh_ratio, ori_wh_ratio);
OcrRecognizerResizeImage(mat, wh_ratio, rec_image_shape);
Normalize::Run(mat, mean, scale, true);
HWC2CHW::Run(mat);
Cast::Run(mat, "float");
mat->ShareWithTensor(output);
output->shape.insert(output->shape.begin(), 1);
return true;
}
bool Recognizer::Postprocess(FDTensor& infer_result,
std::tuple<std::string, float>* rec_result) {
std::vector<int64_t> output_shape = infer_result.shape;
FDASSERT(output_shape[0] == 1, "Only support batch =1 now.");
float* out_data = static_cast<float*>(infer_result.Data());
std::string str_res;
int argmax_idx;
int last_index = 0;
float score = 0.f;
int count = 0;
float max_value = 0.0f;
for (int n = 0; n < output_shape[1]; n++) {
argmax_idx = int(
std::distance(&out_data[n * output_shape[2]],
std::max_element(&out_data[n * output_shape[2]],
&out_data[(n + 1) * output_shape[2]])));
max_value = float(*std::max_element(&out_data[n * output_shape[2]],
&out_data[(n + 1) * output_shape[2]]));
if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
score += max_value;
count += 1;
if(argmax_idx > label_list.size()){
FDERROR << "The output index: " << argmax_idx << " is larger than the size of label_list: "
<< label_list.size() << ". Please check the label file!" << std::endl;
return false;
}
str_res += label_list[argmax_idx];
}
last_index = argmax_idx;
}
score /= count;
std::get<0>(*rec_result) = str_res;
std::get<1>(*rec_result) = score;
return true;
}
bool Recognizer::Predict(cv::Mat* img,
std::tuple<std::string, float>* rec_result) {
Mat mat(*img);
std::vector<FDTensor> input_tensors(1);
if (!Preprocess(&mat, &input_tensors[0], rec_image_shape)) {
FDERROR << "Failed to preprocess input image." << std::endl;
return false;
}
input_tensors[0].name = InputInfoOfRuntime(0).name;
std::vector<FDTensor> output_tensors;
if (!Infer(input_tensors, &output_tensors)) {
FDERROR << "Failed to inference." << std::endl;
return false;
}
if (!Postprocess(output_tensors[0], rec_result)) {
FDERROR << "Failed to post process." << std::endl;
return false;
}
return true;
}
} // namesapce ocr
} // namespace vision
} // namespace fastdeploy