Files
FastDeploy/fastdeploy/vision/ocr/ppocr/dbdetector.h
yunyaoXYY 24317e1a14 [Doc] Rename PPOCRSystem to PPOCR and update comments. (#395)
* Imporve OCR Readme

* Improve OCR Readme

* Improve OCR Readme

* Improve OCR Readme

* Improve OCR Readme

* Add Initialize function to PP-OCR

* Add Initialize function to PP-OCR

* Add Initialize function to PP-OCR

* Make all the model links come from PaddleOCR

* Improve OCR readme

* Improve OCR readme

* Improve OCR readme

* Improve OCR readme

* Add Readme for vision results

* Add Readme for vision results

* Add Readme for vision results

* Add Readme for vision results

* Add Readme for vision results

* Add Readme for vision results

* Add Readme for vision results

* Add Readme for vision results

* Add Readme for vision results

* Add Readme for vision results

* Add check for label file in postprocess of Rec model

* Add check for label file in postprocess of Rec model

* Add check for label file in postprocess of Rec model

* Add check for label file in postprocess of Rec model

* Add check for label file in postprocess of Rec model

* Add check for label file in postprocess of Rec model

* Add comments to create API docs

* Improve OCR comments

* Rename OCR and add comments

* Make sure previous python example works

* Make sure previous python example works

Co-authored-by: Jason <jiangjiajun@baidu.com>
2022-10-19 17:21:48 +08:00

86 lines
3.3 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
#include "fastdeploy/vision/ocr/ppocr/utils/ocr_postprocess_op.h"
namespace fastdeploy {
namespace vision {
/** \brief All OCR series model APIs are defined inside this namespace
*
*/
namespace ocr {
/*! @brief DBDetector object is used to load the detection model provided by PaddleOCR.
*/
class FASTDEPLOY_DECL DBDetector : public FastDeployModel {
public:
DBDetector();
/** \brief Set path of model file, and the configuration of runtime
*
* \param[in] model_file Path of model file, e.g ./ch_PP-OCRv3_det_infer/model.pdmodel.
* \param[in] params_file Path of parameter file, e.g ./ch_PP-OCRv3_det_infer/model.pdiparams, if the model format is ONNX, this parameter will be ignored.
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`.
* \param[in] model_format Model format of the loaded model, default is Paddle format.
*/
DBDetector(const std::string& model_file, const std::string& params_file = "",
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::PADDLE);
/// Get model's name
std::string ModelName() const { return "ppocr/ocr_det"; }
/** \brief Predict the input image and get OCR detection model result.
*
* \param[in] im The input image data, comes from cv::imread().
* \param[in] boxes_result The output of OCR detection model result will be writen to this structure.
* \return true if the prediction is successed, otherwise false.
*/
virtual bool Predict(cv::Mat* im,
std::vector<std::array<int, 8>>* boxes_result);
// Pre & Post process parameters
int max_side_len;
float ratio_h{};
float ratio_w{};
double det_db_thresh;
double det_db_box_thresh;
double det_db_unclip_ratio;
std::string det_db_score_mode;
bool use_dilation;
std::vector<float> mean;
std::vector<float> scale;
bool is_scale;
private:
bool Initialize();
/// Preprocess the input data, and set the preprocessed results to `outputs`
bool Preprocess(Mat* mat, FDTensor* outputs,
std::map<std::string, std::array<float, 2>>* im_info);
/*! @brief Postprocess the inferenced results, and set the final result to `boxes_result`
*/
bool Postprocess(FDTensor& infer_result,
std::vector<std::array<int, 8>>* boxes_result,
const std::map<std::string, std::array<float, 2>>& im_info);
PostProcessor post_processor_;
};
} // namespace ocr
} // namespace vision
} // namespace fastdeploy