Files
FastDeploy/tests/utils/test_config.py
YuanRisheng 24180fba0a
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
[FDConfig]Remove splitwise_role and engine_worker_queue_port in FDConfig (#4147)
* remove splitwise_role and engine_worker_queue_port

* fix xpu

* fix xpu

* fix xpu

* fix unittest

* resolve conflct
2025-09-19 17:01:52 +08:00

117 lines
3.9 KiB
Python

import unittest
from unittest.mock import Mock
from fastdeploy import envs
from fastdeploy.config import (
CacheConfig,
FDConfig,
GraphOptimizationConfig,
LoadConfig,
ParallelConfig,
SchedulerConfig,
)
class TestConfig(unittest.TestCase):
def test_fdconfig_nnode(self):
parallel_config = ParallelConfig({"tensor_parallel_size": 16, "expert_parallel_size": 1})
graph_opt_config = GraphOptimizationConfig({})
cache_config = CacheConfig({})
load_config = LoadConfig({})
scheduler_config = SchedulerConfig({})
model_config = Mock()
fd_config = FDConfig(
parallel_config=parallel_config,
graph_opt_config=graph_opt_config,
load_config=load_config,
cache_config=cache_config,
scheduler_config=scheduler_config,
model_config=model_config,
ips=["1.1.1.1", "0.0.0.0"],
test_mode=True,
)
assert fd_config.nnode == 2
assert fd_config.is_master is False
def test_fdconfig_ips(self):
parallel_config = ParallelConfig({})
graph_opt_config = GraphOptimizationConfig({})
cache_config = CacheConfig({})
load_config = LoadConfig({})
scheduler_config = SchedulerConfig({})
model_config = Mock()
fd_config = FDConfig(
parallel_config=parallel_config,
graph_opt_config=graph_opt_config,
load_config=load_config,
cache_config=cache_config,
scheduler_config=scheduler_config,
model_config=model_config,
ips="0.0.0.0",
test_mode=True,
)
assert fd_config.master_ip == "0.0.0.0"
def test_fdconfig_max_num_tokens(self):
parallel_config = ParallelConfig({})
graph_opt_config = GraphOptimizationConfig({})
cache_config = CacheConfig({})
load_config = LoadConfig({})
cache_config.enable_chunked_prefill = True
scheduler_config = SchedulerConfig({})
model_config = model_config = Mock()
fd_config = FDConfig(
parallel_config=parallel_config,
graph_opt_config=graph_opt_config,
cache_config=cache_config,
load_config=load_config,
scheduler_config=scheduler_config,
model_config=model_config,
ips="0.0.0.0",
test_mode=True,
)
if not envs.ENABLE_V1_KVCACHE_SCHEDULER:
assert fd_config.scheduler_config.max_num_batched_tokens == 2048
cache_config.enable_chunked_prefill = False
fd_config = FDConfig(
parallel_config=parallel_config,
graph_opt_config=graph_opt_config,
cache_config=cache_config,
load_config=load_config,
scheduler_config=scheduler_config,
model_config=model_config,
ips="0.0.0.0",
test_mode=True,
)
if not envs.ENABLE_V1_KVCACHE_SCHEDULER:
assert fd_config.scheduler_config.max_num_batched_tokens == 8192
def test_fdconfig_init_cache(self):
parallel_config = ParallelConfig({})
graph_opt_config = GraphOptimizationConfig({})
cache_config = CacheConfig({})
cache_config.cache_transfer_protocol = "rdma,ipc"
cache_config.pd_comm_port = "2334"
load_config = LoadConfig({})
scheduler_config = SchedulerConfig({})
scheduler_config.splitwise_role = "prefill"
model_config = model_config = Mock()
fd_config = FDConfig(
parallel_config=parallel_config,
graph_opt_config=graph_opt_config,
cache_config=cache_config,
load_config=load_config,
scheduler_config=scheduler_config,
model_config=model_config,
test_mode=True,
)
fd_config.init_cache_info()
assert fd_config.disaggregate_info["role"] == "prefill"
if __name__ == "__main__":
unittest.main()