mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00

Some checks failed
Deploy GitHub Pages / deploy (push) Has been cancelled
* support fa3 backend run in pd disaggregated * support fa3 backend run in pd disaggregated * support fa3 backend run in pd disaggregated * support fa3 backend run in pd disaggregated * delete use_fast_ffn
1224 lines
56 KiB
Python
1224 lines
56 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
import os
|
|
import time
|
|
from typing import List, Optional
|
|
|
|
import numpy as np
|
|
import paddle
|
|
import paddle.nn as nn
|
|
from paddleformers.utils.log import logger
|
|
|
|
from fastdeploy.config import FDConfig
|
|
from fastdeploy.engine.request import Request
|
|
from fastdeploy.model_executor.guided_decoding import get_guided_backend
|
|
from fastdeploy.model_executor.guided_decoding.base_guided_decoding import \
|
|
LogitsProcessorBase
|
|
from fastdeploy.model_executor.layers.attention import get_attention_backend
|
|
from fastdeploy.model_executor.layers.attention.base_attention_backend import \
|
|
AttentionBackend
|
|
from fastdeploy.model_executor.layers.rotary_embedding import get_rope
|
|
from fastdeploy.model_executor.layers.sample.meta_data import SamplingMetadata
|
|
from fastdeploy.model_executor.layers.sample.sampler import (
|
|
Sampler, SpeculativeSampler)
|
|
from fastdeploy.model_executor.model_loader import get_model_from_loader
|
|
from fastdeploy.model_executor.ops.gpu import (set_value_by_flags_and_idx,
|
|
share_external_data)
|
|
from fastdeploy.model_executor.pre_and_post_process import (post_process,
|
|
pre_process,
|
|
rebuild_padding,
|
|
step_cuda)
|
|
from fastdeploy.spec_decode import MTPProposer, NgramProposer
|
|
from fastdeploy.worker.forward_meta import ForwardMeta
|
|
from fastdeploy.worker.model_runner_base import ModelRunnerBase
|
|
from fastdeploy.worker.output import ModelOutputData, ModelRunnerOutput
|
|
|
|
|
|
class GPUModelRunner(ModelRunnerBase):
|
|
""" """
|
|
|
|
def __init__(
|
|
self,
|
|
fd_config: FDConfig,
|
|
device: str, # logic device
|
|
device_id: int, # physical device id
|
|
rank: int,
|
|
local_rank: int):
|
|
super().__init__(fd_config=fd_config, device=device)
|
|
self.rank = rank
|
|
self.local_rank = local_rank
|
|
self.device_id = device_id
|
|
self.speculative_method = self.fd_config.speculative_config.method
|
|
self.speculative_decoding = self.speculative_method is not None
|
|
|
|
self.guided_backend = None
|
|
if self.fd_config.parallel_config.guided_decoding_backend != "off":
|
|
self.guided_backend = get_guided_backend(fd_config=self.fd_config)
|
|
|
|
# Sampler
|
|
if not self.speculative_decoding:
|
|
self.sampler = Sampler()
|
|
else:
|
|
self.sampler = SpeculativeSampler(fd_config)
|
|
|
|
# Lazy initialize kv cache after model loading
|
|
# self.kv_caches: list[paddle.Tensor] = []
|
|
|
|
# Cuda Graph
|
|
self.use_cudagraph = self.graph_opt_config.use_cudagraph
|
|
self.cudagraph_capture_sizes = list(
|
|
reversed(self.graph_opt_config.cudagraph_capture_sizes))
|
|
self.cudagraph_num_of_warmups = self.graph_opt_config.cudagraph_num_of_warmups
|
|
self.input_ids = paddle.zeros(self.parallel_config.max_num_seqs,
|
|
dtype='int32')
|
|
|
|
# Initialize share inputs
|
|
self._init_share_inputs(self.parallel_config.max_num_seqs)
|
|
self.infer_seed_increment = paddle.full(
|
|
shape=[self.parallel_config.max_num_seqs, 1],
|
|
fill_value=4,
|
|
dtype="int64")
|
|
self.restore_chunked_prefill_request = dict()
|
|
|
|
# Initialize attention Backend
|
|
# Note(gonshaotian): Currently, all attention layers share one attention backend instance.
|
|
# In the future, we will expand it as a list.
|
|
self.attn_backends: list[AttentionBackend] = []
|
|
# self.attn_metadatas: list[AttentionMetadata] = []
|
|
self.initialize_attn_backend()
|
|
|
|
# Forward meta store the global meta information of the forward
|
|
self.forward_meta: ForwardMeta = None
|
|
|
|
# Postprocess Env params
|
|
os.environ["INFERENCE_MSG_QUEUE_ID"] = str(
|
|
self.local_rank +
|
|
int(self.parallel_config.engine_worker_queue_port))
|
|
|
|
def prefill_finished(self):
|
|
"""
|
|
check whether prefill stage finished
|
|
"""
|
|
if int(paddle.max(self.share_inputs['seq_lens_encoder'])) != 0:
|
|
return 1
|
|
else:
|
|
return 0
|
|
|
|
def init_speculative_proposer(self):
|
|
"""
|
|
Init speculative proposer
|
|
"""
|
|
if self.speculative_method == "ngram":
|
|
self.proposer = NgramProposer(self.fd_config)
|
|
elif self.speculative_method == "mtp":
|
|
self.proposer = MTPProposer(self.fd_config, self.get_model(),
|
|
self.local_rank, self.device_id,
|
|
self.share_inputs)
|
|
else:
|
|
self.proposer = None
|
|
|
|
def _init_logits_processor(self, request):
|
|
"""
|
|
init logits processor for guided decoding
|
|
"""
|
|
assert self.guided_backend is not None, "guided_backend is None, use "\
|
|
"--guided-decoding-backend to specify the backend at server startup."
|
|
|
|
if request.guided_json is not None:
|
|
schemata_key = ("json", request.guided_json)
|
|
elif request.guided_regex is not None:
|
|
schemata_key = ("regex", request.guided_regex)
|
|
elif request.guided_grammar is not None:
|
|
schemata_key = ("grammar", request.guided_grammar)
|
|
elif request.structural_tag is not None:
|
|
schemata_key = ("structural_tag", request.structural_tag)
|
|
|
|
return self.guided_backend.get_logits_processor(
|
|
schemata_key=schemata_key), schemata_key
|
|
|
|
def insert_prefill_inputs(self, req_dicts: List[Request]):
|
|
"""
|
|
Process inputs for prefill tasks and insert it to share_inputs buffer
|
|
TODO(gongshaotian): Refactor this func
|
|
"""
|
|
# NOTE(luotingdan): Lazy initialize kv cache
|
|
if "caches" not in self.share_inputs:
|
|
self.initialize_kv_cache()
|
|
|
|
# NOTE(luotingdan): Set environment variable of prefill node
|
|
if req_dicts[-1].disaggregate_info is not None and req_dicts[
|
|
-1].disaggregate_info["role"] == "prefill":
|
|
os.environ['PREFILL_NODE_ONE_STEP_STOP'] = "1"
|
|
|
|
req_len = len(req_dicts)
|
|
for i in range(req_len):
|
|
request = req_dicts[i]
|
|
idx = request.idx
|
|
length = len(request.prompt_token_ids)
|
|
|
|
prefill_tokens = []
|
|
if (request.guided_json is not None
|
|
or request.guided_regex is not None
|
|
or request.structural_tag is not None
|
|
or request.guided_grammar is not None):
|
|
logits_info, schemata_key = self._init_logits_processor(
|
|
request)
|
|
request.logits_processor, request.logits_cached = logits_info
|
|
request.schemata_key = schemata_key
|
|
|
|
# Is Decode Node
|
|
if req_dicts[i].disaggregate_info is not None and req_dicts[
|
|
i].disaggregate_info["role"] == "decode":
|
|
prefill_tokens.append(request.prompt_token_ids[0])
|
|
self.share_inputs["pre_ids"][idx:idx +
|
|
1] = request.prompt_token_ids[-1]
|
|
self.share_inputs["input_ids"][idx:idx + 1,
|
|
0] = request.prompt_token_ids[0]
|
|
self.share_inputs['seq_lens_encoder'][idx:idx + 1] = 0
|
|
self.share_inputs['seq_lens_decoder'][idx:idx + 1] = length
|
|
self.share_inputs['seq_lens_this_time'][idx:idx + 1] = 1
|
|
self.share_inputs['step_seq_lens_encoder'][idx:idx + 1] = 0
|
|
self.share_inputs['step_seq_lens_decoder'][idx:idx +
|
|
1] = length
|
|
self.share_inputs['step_idx'][idx:idx + 1] = 1
|
|
|
|
if self.speculative_decoding:
|
|
num_prefill_send_token = self.speculative_config.num_speculative_tokens + 1
|
|
self.share_inputs['draft_tokens'][idx:idx + 1, 0:num_prefill_send_token] =\
|
|
paddle.to_tensor(request.draft_token_ids[0:num_prefill_send_token], dtype="int64")
|
|
self.share_inputs['seq_lens_this_time'][
|
|
idx:idx + 1] = num_prefill_send_token
|
|
else:
|
|
self.share_inputs["pre_ids"][idx:idx + 1] = -1
|
|
self.share_inputs["step_idx"][idx:idx + 1] = 0
|
|
self.share_inputs["input_ids"][idx:idx +
|
|
1, :length] = np.array(
|
|
request.prompt_token_ids)
|
|
|
|
# Use chunked prefill
|
|
if self.parallel_config.enable_chunked_prefill:
|
|
request.set("chunk_idx", 1)
|
|
logger.info(
|
|
f"prefill_chunk_info: {request.prefill_chunk_info}")
|
|
token_chunk_size = request.prefill_chunk_info[0]
|
|
self.share_inputs["seq_lens_this_time"][
|
|
idx:idx + 1] = token_chunk_size
|
|
self.share_inputs['input_ids'][
|
|
idx, :token_chunk_size] = np.array(
|
|
request.prompt_token_ids[:token_chunk_size])
|
|
self.share_inputs['step_seq_lens_encoder'][
|
|
idx:idx + 1] = token_chunk_size
|
|
self.share_inputs['seq_lens_encoder'][idx:idx +
|
|
1] = token_chunk_size
|
|
self.share_inputs['seq_lens_decoder'][
|
|
idx:idx + 1] = request.get("seq_lens_decoder", 0)
|
|
self.share_inputs['step_seq_lens_decoder'][
|
|
idx:idx + 1] = request.get("seq_lens_decoder", 0)
|
|
else:
|
|
self.share_inputs['seq_lens_decoder'][
|
|
idx:idx + 1] = request.get("seq_lens_decoder", 0)
|
|
self.share_inputs['step_seq_lens_decoder'][
|
|
idx:idx + 1] = request.get("seq_lens_decoder", 0)
|
|
self.share_inputs['seq_lens_this_time'][idx:idx +
|
|
1] = length
|
|
self.share_inputs['step_seq_lens_encoder'][idx:idx +
|
|
1] = length
|
|
self.share_inputs['seq_lens_encoder'][idx:idx + 1] = length
|
|
|
|
if len(request.eos_token_ids
|
|
) < self.parallel_config.eos_tokens_lens:
|
|
request.eos_token_ids.append(request.eos_token_ids[0])
|
|
self.share_inputs["eos_token_id"][:] = np.array(
|
|
request.eos_token_ids, dtype="int64").reshape(-1, 1)
|
|
|
|
self.share_inputs["top_p"][idx:idx + 1] = request.get("top_p", 0.7)
|
|
self.share_inputs["temperature"][idx:idx + 1] = request.get(
|
|
"temperature", 0.95)
|
|
self.share_inputs["penalty_score"][idx:idx + 1] = request.get(
|
|
"repetition_penalty", 1.0)
|
|
self.share_inputs["frequency_score"][idx:idx + 1] = request.get(
|
|
"frequency_penalty", 0.0)
|
|
self.share_inputs["presence_score"][idx:idx + 1] = request.get(
|
|
"presence_penalty", 0.0)
|
|
|
|
self.share_inputs["min_dec_len"][idx:idx + 1] = request.get(
|
|
"min_tokens", 1)
|
|
self.share_inputs["max_dec_len"][idx:idx + 1] = request.get(
|
|
"max_tokens", self.model_config.max_length)
|
|
self.share_inputs["stop_flags"][idx:idx + 1] = False
|
|
|
|
self.share_inputs["first_token_ids"][
|
|
idx:idx + 1] = self.share_inputs["input_ids"][idx:idx + 1, :1]
|
|
self.share_inputs["ori_seq_lens_encoder"][idx:idx + 1] = length
|
|
|
|
if request.get("seed") is not None:
|
|
self.share_inputs["infer_seed"][idx:idx +
|
|
1] = request.get("seed")
|
|
encoder_block_num = len(request.get("block_tables"))
|
|
self.share_inputs["encoder_block_lens"][idx:idx +
|
|
1] = encoder_block_num
|
|
self.share_inputs["block_tables"][idx:idx + 1, :] = -1
|
|
self.share_inputs["block_tables"][
|
|
idx:idx + 1, :encoder_block_num] = np.array(
|
|
request.block_tables, dtype="int32")
|
|
|
|
if request.get("stop_token_ids") is not None and request.get(
|
|
"stop_seqs_len") is not None:
|
|
stop_seqs_num = len(request.get("stop_seqs_len"))
|
|
for i in range(stop_seqs_num,
|
|
self.model_config.max_stop_seqs_num):
|
|
request.stop_seqs_len.append(0)
|
|
self.share_inputs["stop_seqs_len"][:] = np.array(
|
|
request.stop_seqs_len, dtype="int32")
|
|
self.share_inputs["stop_seqs"][:stop_seqs_num, :len(
|
|
request.get("stop_token_ids")[0])] = np.array(
|
|
request.get("stop_token_ids"), dtype="int64")
|
|
|
|
self.sampler.apply_logits_processor(
|
|
idx, request.get("logits_processor"), prefill_tokens)
|
|
|
|
self.share_inputs["not_need_stop"][0] = True
|
|
|
|
if self.speculative_method in ["mtp"]:
|
|
self.proposer.insert_prefill_inputs(req_dicts)
|
|
|
|
def _dummy_prefill_inputs(self, num_tokens: int, batch_size: int,
|
|
expected_decode_len: int):
|
|
""" Set dummy prefill inputs to share_inputs """
|
|
# NOTE(gongshaotian): The maximum decoding length is equal to the expected decoded tokens plus the eos token
|
|
max_dec_len = expected_decode_len + 1
|
|
full_length = min(num_tokens // batch_size,
|
|
self.parallel_config.max_model_len - max_dec_len)
|
|
input_length = int(full_length * self.parallel_config.kv_cache_ratio)
|
|
block_num = (
|
|
input_length + self.parallel_config.block_size - 1
|
|
) // self.parallel_config.block_size + self.parallel_config.enc_dec_block_num
|
|
|
|
for i in range(batch_size):
|
|
idx = i
|
|
self.share_inputs["input_ids"][idx:idx +
|
|
1, :input_length] = np.array(
|
|
[5] * input_length)
|
|
self.share_inputs["eos_token_id"][:] = np.array(
|
|
[2], dtype="int64").reshape(-1, 1)
|
|
self.share_inputs["seq_lens_this_time"][idx:idx + 1] = input_length
|
|
self.share_inputs["step_seq_lens_encoder"][idx:idx +
|
|
1] = input_length
|
|
self.share_inputs["seq_lens_encoder"][idx:idx + 1] = input_length
|
|
self.share_inputs["seq_lens_decoder"][idx:idx + 1] = 0
|
|
self.share_inputs["step_idx"][idx:idx + 1] = 0
|
|
self.share_inputs["max_dec_len"][idx:idx + 1] = max_dec_len
|
|
self.share_inputs["stop_flags"][idx:idx + 1] = False
|
|
|
|
self.share_inputs["first_token_ids"][
|
|
idx:idx + 1] = self.share_inputs["input_ids"][idx:idx + 1, :1]
|
|
self.share_inputs["ori_seq_lens_encoder"][idx:idx +
|
|
1] = input_length
|
|
|
|
self.share_inputs["encoder_block_lens"][idx:idx + 1] = block_num
|
|
self.share_inputs["block_tables"][idx : idx + 1, :block_num] = np.arange(idx * block_num, \
|
|
(idx + 1) * block_num, 1)
|
|
|
|
def _init_share_inputs(self, max_num_seqs: int):
|
|
"""Initialize all share buffers for model inputs.
|
|
Note: In the future, we may abandon share buffers.
|
|
"""
|
|
self.MAX_INFER_SEED = 9223372036854775806
|
|
self.share_inputs = {}
|
|
|
|
self.share_inputs["pre_ids"] = paddle.full(
|
|
[max_num_seqs, self.parallel_config.max_model_len],
|
|
-1,
|
|
dtype='int64')
|
|
self.share_inputs["input_ids"] = paddle.full(
|
|
[max_num_seqs, self.parallel_config.max_model_len],
|
|
self.parallel_config.pad_token_id,
|
|
dtype='int64')
|
|
self.share_inputs["eos_token_id"] = paddle.full(
|
|
[self.parallel_config.eos_tokens_lens, 1], 0, dtype='int64')
|
|
self.share_inputs["top_p"] = paddle.full([max_num_seqs, 1],
|
|
self.model_config.top_p,
|
|
dtype='float32')
|
|
self.share_inputs["temperature"] = paddle.full(
|
|
[max_num_seqs, 1], self.model_config.temperature, dtype='float32')
|
|
self.share_inputs["penalty_score"] = paddle.full(
|
|
[max_num_seqs, 1],
|
|
self.model_config.penalty_score,
|
|
dtype='float32')
|
|
self.share_inputs["frequency_score"] = paddle.full(
|
|
[max_num_seqs, 1],
|
|
self.model_config.frequency_score,
|
|
dtype='float32')
|
|
self.share_inputs["presence_score"] = paddle.full(
|
|
[max_num_seqs, 1],
|
|
self.model_config.presence_score,
|
|
dtype='float32')
|
|
|
|
self.share_inputs["min_dec_len"] = paddle.full(
|
|
[max_num_seqs, 1], self.model_config.min_length, dtype='int64')
|
|
self.share_inputs["max_dec_len"] = paddle.full(
|
|
[max_num_seqs, 1], self.model_config.max_length, dtype='int64')
|
|
self.share_inputs["min_length"] = paddle.full(
|
|
[max_num_seqs, 1], self.model_config.min_length, dtype='int64')
|
|
self.share_inputs["max_length"] = paddle.full(
|
|
[max_num_seqs, 1], self.model_config.max_length, dtype='int64')
|
|
self.share_inputs["seq_lens_this_time"] = paddle.full(max_num_seqs,
|
|
0,
|
|
dtype='int32')
|
|
self.share_inputs["seq_lens_encoder"] = paddle.full([max_num_seqs, 1],
|
|
0,
|
|
dtype='int32')
|
|
self.share_inputs["seq_lens_decoder"] = paddle.full([max_num_seqs, 1],
|
|
0,
|
|
dtype='int32')
|
|
self.share_inputs["step_seq_lens_encoder"] = paddle.full(
|
|
[max_num_seqs, 1], 0, dtype='int32')
|
|
self.share_inputs["step_seq_lens_decoder"] = paddle.full(
|
|
[max_num_seqs, 1], 0, dtype='int32')
|
|
self.share_inputs["step_idx"] = paddle.full([max_num_seqs, 1],
|
|
0,
|
|
dtype='int64')
|
|
self.share_inputs["not_need_stop"] = paddle.full(
|
|
[1], False,
|
|
dtype='bool').cpu() # TODO(gongshaotian): move to pinnd memory
|
|
self.share_inputs["stop_flags"] = paddle.full([max_num_seqs, 1],
|
|
True,
|
|
dtype='bool')
|
|
self.share_inputs["stop_nums"] = paddle.full([1],
|
|
max_num_seqs,
|
|
dtype='int64')
|
|
|
|
self.share_inputs["bad_tokens"] = paddle.full([1], -1, dtype='int64')
|
|
self.share_inputs["next_tokens"] = paddle.full([max_num_seqs, 1],
|
|
-1,
|
|
dtype='int64')
|
|
self.share_inputs["is_block_step"] = paddle.full([max_num_seqs],
|
|
False,
|
|
dtype='bool')
|
|
self.share_inputs["encoder_block_lens"] = paddle.full([max_num_seqs],
|
|
0,
|
|
dtype='int32')
|
|
self.share_inputs["step_block_list"] = paddle.full([max_num_seqs],
|
|
-1,
|
|
dtype='int32')
|
|
self.share_inputs["step_lens"] = paddle.full([1], 0, dtype='int32')
|
|
self.share_inputs["recover_block_list"] = paddle.full([max_num_seqs],
|
|
-1,
|
|
dtype='int32')
|
|
self.share_inputs["recover_lens"] = paddle.full([1], 0, dtype='int32')
|
|
self.share_inputs["need_block_list"] = paddle.full([max_num_seqs],
|
|
-1,
|
|
dtype='int32')
|
|
self.share_inputs["need_block_len"] = paddle.full([1],
|
|
0,
|
|
dtype='int32')
|
|
self.share_inputs["used_list_len"] = paddle.full([max_num_seqs],
|
|
0,
|
|
dtype='int32')
|
|
self.share_inputs["infer_seed"] = paddle.full([max_num_seqs, 1],
|
|
0,
|
|
dtype='int64')
|
|
self.share_inputs["first_token_ids"] = paddle.full([max_num_seqs, 1],
|
|
-1,
|
|
dtype='int64')
|
|
self.share_inputs["ori_seq_lens_encoder"] = paddle.full(
|
|
[max_num_seqs, 1], 0, dtype='int32')
|
|
self.share_inputs["system_lens"] = paddle.full([max_num_seqs, 1],
|
|
0,
|
|
dtype='int32')
|
|
self.share_inputs["system_ids"] = paddle.full([max_num_seqs, 1],
|
|
-1,
|
|
dtype='int32')
|
|
|
|
self.share_inputs["ids_remove_padding"] = paddle.full(
|
|
[max_num_seqs * self.parallel_config.max_model_len],
|
|
0,
|
|
dtype='int64')
|
|
self.share_inputs["cum_offsets"] = paddle.full([max_num_seqs, 1],
|
|
0,
|
|
dtype='int32')
|
|
self.share_inputs["padding_offset"] = paddle.full([max_num_seqs, 1],
|
|
0,
|
|
dtype='int32')
|
|
self.share_inputs["cu_seqlens_q"] = paddle.full([max_num_seqs, 1],
|
|
0,
|
|
dtype='int32')
|
|
self.share_inputs["cu_seqlens_k"] = paddle.full([max_num_seqs, 1],
|
|
0,
|
|
dtype='int32')
|
|
# AttentionBackend buffers
|
|
self.share_inputs["decoder_batch_ids"] = paddle.full([max_num_seqs, 1],
|
|
0,
|
|
dtype='int32')
|
|
self.share_inputs["decoder_tile_ids_per_batch"] = paddle.full(
|
|
[max_num_seqs, 1], 0, dtype='int32')
|
|
|
|
# Initialize rotary position embedding
|
|
tmp_position_ids = paddle.arange(
|
|
self.parallel_config.max_model_len).reshape((1, -1))
|
|
# TODO(gongshaotian): move to models
|
|
self.share_inputs["rope_emb"] = get_rope(
|
|
rotary_dim=self.model_config.head_dim,
|
|
position_ids=tmp_position_ids,
|
|
base=self.model_config.rope_theta,
|
|
model_config=self.model_config)
|
|
|
|
# Set block tables
|
|
pre_max_block_num = (
|
|
self.parallel_config.max_model_len +
|
|
self.parallel_config.block_size - 1
|
|
) // self.parallel_config.block_size + self.parallel_config.enc_dec_block_num
|
|
self.share_inputs["block_tables"] = paddle.full(
|
|
[max_num_seqs, pre_max_block_num], -1, dtype='int32')
|
|
|
|
# Initialize free list
|
|
free_list = list(
|
|
range(
|
|
self.parallel_config.max_block_num - 1,
|
|
int(self.parallel_config.max_block_num *
|
|
self.parallel_config.kv_cache_ratio) - 1, -1))
|
|
self.free_list_len = len(free_list)
|
|
self.share_inputs["free_list"] = paddle.to_tensor(free_list,
|
|
dtype="int32")
|
|
self.share_inputs["free_list_len"] = paddle.full([1],
|
|
self.free_list_len,
|
|
dtype="int32")
|
|
|
|
# Initialize stop seqs
|
|
self.share_inputs["stop_seqs_len"] = paddle.full(
|
|
[self.model_config.max_stop_seqs_num], 0, dtype="int32")
|
|
self.share_inputs["stop_seqs"] = paddle.full([
|
|
self.model_config.max_stop_seqs_num,
|
|
self.model_config.stop_seqs_max_len
|
|
],
|
|
-1,
|
|
dtype="int32")
|
|
if self.speculative_decoding:
|
|
max_draft_token_num = self.speculative_config.num_speculative_tokens
|
|
self.share_inputs["input_ids_cpu"] = paddle.full(
|
|
shape=[max_num_seqs, self.parallel_config.max_model_len],
|
|
fill_value=1,
|
|
dtype='int64').cpu()
|
|
self.share_inputs['accept_tokens'] = paddle.full(
|
|
shape=[max_num_seqs, max_draft_token_num + 1],
|
|
fill_value=0,
|
|
dtype="int64")
|
|
self.share_inputs['accept_num'] = paddle.full(shape=[max_num_seqs],
|
|
fill_value=0,
|
|
dtype='int32')
|
|
self.share_inputs['draft_tokens'] = paddle.full(
|
|
shape=[max_num_seqs, max_draft_token_num + 1],
|
|
fill_value=0,
|
|
dtype="int64")
|
|
|
|
self.share_inputs['actual_draft_token_num'] = paddle.full(
|
|
shape=[max_num_seqs],
|
|
fill_value=max_draft_token_num,
|
|
dtype="int32")
|
|
self.share_inputs["output_cum_offsets"] = paddle.full(
|
|
shape=[max_num_seqs, 1], fill_value=0, dtype='int32')
|
|
self.share_inputs["output_padding_offset"] = paddle.full(
|
|
shape=[max_num_seqs * (max_draft_token_num + 1)],
|
|
fill_value=0,
|
|
dtype="int32")
|
|
|
|
def _prepare_inputs(self) -> None:
|
|
""" prepare the model inputs """
|
|
# Remove padding
|
|
(
|
|
ids_remove_padding,
|
|
cum_offsets,
|
|
padding_offset,
|
|
cu_seqlens_q,
|
|
cu_seqlens_k,
|
|
output_cum_offsets,
|
|
output_padding_offset,
|
|
) = pre_process(
|
|
self.parallel_config.max_model_len, self.share_inputs["input_ids"],
|
|
self.share_inputs["seq_lens_this_time"], self.speculative_decoding,
|
|
self.share_inputs["draft_tokens"] if self.speculative_decoding else
|
|
None, self.share_inputs["seq_lens_encoder"],
|
|
self.share_inputs["seq_lens_decoder"])
|
|
|
|
self.share_inputs["ids_remove_padding"].copy_(ids_remove_padding,
|
|
False)
|
|
self.share_inputs["cum_offsets"].copy_(cum_offsets, False)
|
|
self.share_inputs["padding_offset"].copy_(padding_offset, False)
|
|
self.share_inputs["cu_seqlens_q"].copy_(cu_seqlens_q, False)
|
|
self.share_inputs["cu_seqlens_k"].copy_(cu_seqlens_k, False)
|
|
|
|
# For speculative decoding
|
|
if self.speculative_decoding:
|
|
self.share_inputs["output_cum_offsets"].copy_(
|
|
output_cum_offsets, False)
|
|
self.share_inputs["output_padding_offset"].copy_(
|
|
output_padding_offset, False)
|
|
|
|
# Initialize forward meta data
|
|
self.initialize_forward_meta()
|
|
|
|
# Get sampling metadata
|
|
self.sampling_metadata = SamplingMetadata(
|
|
temperature=self.share_inputs["temperature"],
|
|
top_p=self.share_inputs["top_p"],
|
|
step_idx=self.share_inputs["step_idx"],
|
|
pre_token_ids=self.share_inputs["pre_ids"],
|
|
frequency_penalties=self.share_inputs["frequency_score"],
|
|
presence_penalties=self.share_inputs["presence_score"],
|
|
repetition_penalties=self.share_inputs["penalty_score"],
|
|
min_dec_lens=self.share_inputs["min_dec_len"],
|
|
bad_words_token_ids=self.share_inputs["bad_tokens"],
|
|
eos_token_ids=self.share_inputs["eos_token_id"],
|
|
)
|
|
|
|
def load_model(self) -> None:
|
|
""" load or download model """
|
|
logger.info(
|
|
f"Starting to load model {self.model_config.architectures[0]}")
|
|
time_before_load = time.perf_counter()
|
|
# 1. Load original model
|
|
self.model = get_model_from_loader(fd_config=self.fd_config)
|
|
# 1.1 Load RL dynamic model
|
|
if self.fd_config.load_config.dynamic_load_weight:
|
|
from fastdeploy.rl.dynamic_weight_manager import \
|
|
DynamicWeightManager
|
|
self.dynamic_weight_manager = DynamicWeightManager(self.fd_config, self.model)
|
|
|
|
# 2. Load lora model
|
|
|
|
# 3. Load drafter model(for speculative decoding)
|
|
|
|
time_after_load = time.perf_counter()
|
|
logger.info(
|
|
f"Model loading took {time_after_load - time_before_load} seconds")
|
|
|
|
# 4. Init proposer for speculative method
|
|
self.init_speculative_proposer()
|
|
|
|
def get_model(self) -> nn.Layer:
|
|
""" get current model """
|
|
return self.model
|
|
|
|
def initialize_forward_meta(self):
|
|
"""
|
|
Initialize forward meta and attention meta data
|
|
"""
|
|
# Initialize forward meta
|
|
self.forward_meta = ForwardMeta.init_forward_meta(
|
|
self.share_inputs, self.attn_backends[0])
|
|
|
|
# Initialzie attention meta data
|
|
for attn_backend in self.attn_backends:
|
|
attn_backend.init_attention_metadata(self.forward_meta)
|
|
|
|
def clear_cache(self):
|
|
"""Clear cached data from shared inputs and forward metadata."""
|
|
self.share_inputs.pop("caches", None)
|
|
if self.forward_meta is not None:
|
|
self.forward_meta.clear_caches()
|
|
|
|
def clear_parameters(self, pid):
|
|
""""dynamic model loader use to clear parameters use for RL"""
|
|
self.dynamic_weight_manager.clear_parameters(pid)
|
|
self.clear_cache()
|
|
paddle.device.cuda.empty_cache()
|
|
self.dynamic_weight_manager._log_memory("dynamic weight manager clear all memory")
|
|
|
|
def update_parameters(self, pid):
|
|
""""dynamic model loader use to update parameters use for RL"""
|
|
self.dynamic_weight_manager.update_parameters(pid)
|
|
self.initialize_kv_cache()
|
|
self.dynamic_weight_manager._log_memory("dynamic weight manager update all memory")
|
|
|
|
def initialize_kv_cache(self) -> None:
|
|
"""
|
|
Initialize kv cache
|
|
"""
|
|
cache_kvs = {}
|
|
max_block_num = self.num_gpu_blocks
|
|
|
|
# Get kv cache dtype
|
|
cache_type = self.parallel_config.dtype
|
|
|
|
if (self.quant_config
|
|
and hasattr(self.quant_config, "kv_cache_quant_type")
|
|
and self.quant_config.kv_cache_quant_type is not None):
|
|
cache_type = 'uint8'
|
|
|
|
# Get kv cache shape
|
|
kv_cache_shape = self.attn_backends[0].get_kv_cache_shape(
|
|
max_num_blocks=max_block_num)
|
|
local_rank = self.local_rank % self.parallel_config.tensor_parallel_degree
|
|
|
|
if not self.parallel_config.do_profile and (
|
|
self.parallel_config.enable_prefix_caching \
|
|
or self.parallel_config.splitwise_role != "mixed"):
|
|
cache_kvs_list = []
|
|
for i in range(self.model_config.num_layers):
|
|
key_cache = paddle.empty(shape=[], dtype=cache_type)
|
|
key_cache_name = f"key_caches_{i}_rank{local_rank}.device{self.device_id}"
|
|
val_cache_name = f"value_caches_{i}_rank{local_rank}.device{self.device_id}"
|
|
key_cache = share_external_data(key_cache, key_cache_name,
|
|
kv_cache_shape)
|
|
cache_kvs_list.append(key_cache)
|
|
value_cache = paddle.empty(shape=[], dtype=cache_type)
|
|
value_cache = share_external_data(value_cache, val_cache_name,
|
|
kv_cache_shape)
|
|
cache_kvs_list.append(value_cache)
|
|
|
|
self.share_inputs["caches"] = cache_kvs_list
|
|
|
|
else:
|
|
for i in range(self.model_config.num_layers):
|
|
|
|
cache_kvs["key_caches_{}".format(i)] = paddle.full(
|
|
shape=kv_cache_shape,
|
|
fill_value=0,
|
|
dtype=cache_type,
|
|
)
|
|
cache_kvs["value_caches_{}".format(i)] = paddle.full(
|
|
shape=kv_cache_shape,
|
|
fill_value=0,
|
|
dtype=cache_type,
|
|
)
|
|
self.share_inputs["caches"] = list(cache_kvs.values())
|
|
for value in cache_kvs.values():
|
|
del value
|
|
paddle.device.cuda.empty_cache()
|
|
|
|
def initialize_attn_backend(self) -> None:
|
|
"""
|
|
Initialize attention backends and forward metadata
|
|
"""
|
|
assert len(self.attn_backends) == 0
|
|
|
|
# TODO(gongshaotian): Get rank from config
|
|
num_heads = self.model_config.num_attention_heads // self.parallel_config.tensor_parallel_degree
|
|
self.model_config.kv_num_heads = int(
|
|
self.model_config.num_key_value_heads
|
|
) // self.parallel_config.tensor_parallel_degree
|
|
head_dim = self.model_config.head_dim
|
|
|
|
# Get the attention backend
|
|
attn_cls = get_attention_backend()
|
|
attn_backend = attn_cls(self.fd_config,
|
|
kv_num_heads=self.model_config.kv_num_heads,
|
|
num_heads=num_heads,
|
|
head_dim=head_dim)
|
|
if attn_backend is None:
|
|
raise NotImplementedError(
|
|
"Attention backend which you specified is not supported, please set FD_ATTENTION_BACKEND correctly."
|
|
)
|
|
self.attn_backends.append(attn_backend)
|
|
|
|
def _dummy_run(self,
|
|
num_tokens: paddle.Tensor,
|
|
batch_size: paddle.Tensor,
|
|
expected_decode_len: int = 1,
|
|
in_capturing: bool = False) -> paddle.Tensor:
|
|
"""
|
|
Use dummy inputs to run before formal execution.
|
|
Args:
|
|
num_tokens:
|
|
expected_decode_len: Expected number of tokens generated
|
|
"""
|
|
self._dummy_prefill_inputs(num_tokens=num_tokens,
|
|
batch_size=batch_size,
|
|
expected_decode_len=expected_decode_len)
|
|
if self.speculative_method in ["mtp"]:
|
|
self.proposer.dummy_prefill_inputs(
|
|
num_tokens=num_tokens,
|
|
batch_size=batch_size,
|
|
expected_decode_len=expected_decode_len)
|
|
while True:
|
|
|
|
# 1. Compute real num_tokens
|
|
self._prepare_inputs()
|
|
|
|
# 2. Initialize attention backend and forward meta data
|
|
|
|
# 3. Prepare lora
|
|
|
|
# 4. Run model
|
|
is_decode_batch = not ((self.share_inputs["seq_lens_this_time"]
|
|
> 1).sum() > 0)
|
|
self.forward_meta.step_use_cudagraph = is_decode_batch and in_capturing
|
|
self.forward_meta.is_decode_batch = is_decode_batch
|
|
model_output = self.model(
|
|
ids_remove_padding=self.share_inputs["ids_remove_padding"],
|
|
forward_meta=self.forward_meta)
|
|
|
|
hiddden_states = rebuild_padding(
|
|
model_output,
|
|
self.share_inputs["cum_offsets"],
|
|
self.share_inputs["seq_lens_this_time"],
|
|
self.share_inputs["seq_lens_decoder"],
|
|
self.share_inputs["seq_lens_encoder"],
|
|
self.share_inputs["output_padding_offset"]
|
|
if self.speculative_decoding else
|
|
None, # speculative decoding requires
|
|
self.parallel_config.max_model_len,
|
|
)
|
|
|
|
# 5. Execute spec decode
|
|
logits = self.model.compute_logits(hiddden_states)
|
|
|
|
if not self.speculative_decoding:
|
|
set_value_by_flags_and_idx(
|
|
self.share_inputs["pre_ids"],
|
|
self.share_inputs["input_ids"],
|
|
self.share_inputs["seq_lens_this_time"],
|
|
self.share_inputs["seq_lens_encoder"],
|
|
self.share_inputs["seq_lens_decoder"],
|
|
self.share_inputs["step_idx"],
|
|
self.share_inputs["stop_flags"],
|
|
)
|
|
sampled_token_ids = self.sampler(logits,
|
|
self.sampling_metadata)
|
|
if self.parallel_config.tensor_parallel_degree > 1:
|
|
paddle.distributed.broadcast(sampled_token_ids, 0)
|
|
else:
|
|
self.sampler(logits, self.sampling_metadata,
|
|
self.parallel_config.max_model_len,
|
|
self.share_inputs)
|
|
sampled_token_ids = None
|
|
if self.parallel_config.tensor_parallel_degree > 1:
|
|
paddle.distributed.broadcast(
|
|
self.share_inputs["accept_tokens"], 0)
|
|
paddle.distributed.broadcast(
|
|
self.share_inputs["accept_num"], 0)
|
|
paddle.distributed.broadcast(self.share_inputs["step_idx"],
|
|
0)
|
|
paddle.distributed.broadcast(
|
|
self.share_inputs["stop_flags"], 0)
|
|
|
|
# 6. post process
|
|
model_output_data = ModelOutputData(
|
|
next_tokens=self.share_inputs["next_tokens"],
|
|
stop_flags=self.share_inputs["stop_flags"],
|
|
step_idx=self.share_inputs["step_idx"],
|
|
max_dec_len=self.share_inputs["max_dec_len"],
|
|
pre_ids=self.share_inputs["pre_ids"],
|
|
seq_lens_this_time=self.share_inputs["seq_lens_this_time"],
|
|
eos_token_id=self.share_inputs["eos_token_id"],
|
|
not_need_stop=self.share_inputs["not_need_stop"],
|
|
input_ids=self.share_inputs["input_ids"],
|
|
stop_nums=self.share_inputs["stop_nums"],
|
|
seq_lens_encoder=self.share_inputs["seq_lens_encoder"],
|
|
seq_lens_decoder=self.share_inputs["seq_lens_decoder"],
|
|
is_block_step=self.share_inputs["is_block_step"],
|
|
full_hidden_states=model_output,
|
|
msg_queue_id=self.parallel_config.msg_queue_id,
|
|
mp_rank=self.local_rank,
|
|
use_ep=self.parallel_config.use_ep,
|
|
draft_tokens=self.share_inputs["draft_tokens"]
|
|
if self.speculative_decoding else None,
|
|
actual_draft_token_num=self.
|
|
share_inputs["actual_draft_token_num"]
|
|
if self.speculative_decoding else None,
|
|
accept_tokens=self.share_inputs["accept_tokens"]
|
|
if self.speculative_decoding else None,
|
|
accept_num=self.share_inputs["accept_num"]
|
|
if self.speculative_decoding else None)
|
|
|
|
post_process(sampled_token_ids=sampled_token_ids,
|
|
model_output=model_output_data,
|
|
speculative_decoding=self.speculative_decoding,
|
|
skip_save_output=True)
|
|
|
|
if self.speculative_decoding:
|
|
if self.speculative_method == "mtp":
|
|
self.proposer.run(full_hidden_states=model_output)
|
|
else:
|
|
self.proposer.run(share_inputs=self.share_inputs)
|
|
|
|
# 7. Updata 'infer_seed' and step_cuda()
|
|
self.share_inputs["infer_seed"].add_(self.infer_seed_increment)
|
|
self.share_inputs["infer_seed"][:] %= self.MAX_INFER_SEED
|
|
step_cuda(self.share_inputs, self.parallel_config.block_size,
|
|
self.parallel_config.enc_dec_block_num,
|
|
self.speculative_config,
|
|
self.parallel_config.enable_prefix_caching)
|
|
|
|
if int((self.share_inputs['seq_lens_this_time'] > 0).sum()) == 0:
|
|
break
|
|
|
|
def _update_chunked_prefill(self, tasks):
|
|
"""
|
|
更新chunked prefill相关参数
|
|
"""
|
|
if not self.parallel_config.enable_chunked_prefill:
|
|
return
|
|
|
|
for task in tasks:
|
|
if task.get("prefill_chunk_info", None) is None:
|
|
continue
|
|
|
|
if task.chunk_idx > len(task.prefill_chunk_info):
|
|
continue
|
|
self.restore_chunked_prefill_request[task.request_id] = task
|
|
|
|
for id, task in list(self.restore_chunked_prefill_request.items()):
|
|
idx = task.idx
|
|
logger.debug(
|
|
f"{task.request_id} chunked prefill {task.chunk_idx}/{len(task.prefill_chunk_info)}"
|
|
)
|
|
start_idx = sum(task.prefill_chunk_info[:task.chunk_idx])
|
|
if task.chunk_idx == len(task.prefill_chunk_info):
|
|
self.share_inputs["seq_lens_this_time"][idx:idx + 1] = 1
|
|
self.share_inputs['seq_lens_encoder'][idx:idx + 1] = 0
|
|
self.share_inputs["step_idx"][idx:idx + 1] = 1
|
|
self.share_inputs["seq_lens_decoder"][
|
|
idx:idx + 1] = start_idx + task.get("seq_lens_decoder", 0)
|
|
del self.restore_chunked_prefill_request[task.request_id]
|
|
else:
|
|
token_chunk_size = task.prefill_chunk_info[task.chunk_idx]
|
|
|
|
self.share_inputs["seq_lens_this_time"][idx:idx +
|
|
1] = token_chunk_size
|
|
self.share_inputs['input_ids'][
|
|
idx, :token_chunk_size] = np.array(
|
|
task.prompt_token_ids[start_idx:start_idx +
|
|
token_chunk_size])
|
|
self.share_inputs['seq_lens_encoder'][idx:idx +
|
|
1] = token_chunk_size
|
|
self.share_inputs["step_idx"][idx:idx + 1] = 0
|
|
self.share_inputs["seq_lens_decoder"][
|
|
idx:idx + 1] = start_idx + task.get("seq_lens_decoder", 0)
|
|
task.chunk_idx += 1
|
|
|
|
def _dummy_sampler_run(self) -> paddle.Tensor:
|
|
""" """
|
|
pass
|
|
|
|
def capture_model(self) -> None:
|
|
"""
|
|
Trigger CUDA Graph capture for all shapes in 'CudaGraphConfig.cudagraph_capture_sizes'
|
|
"""
|
|
if not self.use_cudagraph:
|
|
logger.info(
|
|
"Skipping CUDA graph capture. Please check GraphOptimizationConfig"
|
|
)
|
|
return
|
|
time_before_capture = time.perf_counter()
|
|
expected_decode_len = 1
|
|
capture_sizes = self.cudagraph_capture_sizes.copy()
|
|
for batch_size in sorted(capture_sizes, reverse=True):
|
|
self._dummy_run(num_tokens=self.parallel_config.max_model_len,
|
|
batch_size=batch_size,
|
|
in_capturing=True,
|
|
expected_decode_len=expected_decode_len)
|
|
logger.info(
|
|
f"Warm up the model with the batch size:{batch_size}, num tokens:{expected_decode_len}"
|
|
)
|
|
|
|
time_after_capture = time.perf_counter()
|
|
logger.info(
|
|
f"Cuda Graph capturing took {time_after_capture - time_before_capture} seconds"
|
|
)
|
|
|
|
def _get_skip_idx(self, model_forward_batch):
|
|
"""
|
|
Get the index of the request that needs to be skipped during execution.
|
|
Args:
|
|
model_forward_batch: A list of requests to be executed by this runner.
|
|
Returns:
|
|
A list of indices corresponding to the requests that need to be skipped.
|
|
"""
|
|
skip_idx_list = []
|
|
if not self.parallel_config.enable_chunked_prefill or self.guided_backend is None:
|
|
return skip_idx_list
|
|
|
|
for task in model_forward_batch:
|
|
if task.get("prefill_chunk_info",
|
|
None) is None or task.chunk_idx >= len(
|
|
task.prefill_chunk_info):
|
|
continue
|
|
skip_idx_list.append(task.idx)
|
|
|
|
for task in self.restore_chunked_prefill_request.values():
|
|
if task.idx in skip_idx_list or task.chunk_idx >= len(
|
|
task.prefill_chunk_info):
|
|
continue
|
|
skip_idx_list.append(task.idx)
|
|
|
|
return skip_idx_list
|
|
|
|
def execute_model(
|
|
self,
|
|
model_forward_batch: Optional[List[Request]] = None,
|
|
) -> Optional[ModelRunnerOutput]:
|
|
"""
|
|
The Entrance of model execute.
|
|
Args:
|
|
model_forward_batch: 'Request' contains information related to prompt and is an abstract
|
|
class at the server level, which is too granular for ModelRunner.
|
|
We plan to replace it with 'ModelForwardBatch'.
|
|
intermediate_tensors:
|
|
"""
|
|
# Note(@wufeisheng): If `not_need_stop`` is False, it means the current worker is in an idle state.
|
|
# This logic is not used in TP (Tensor Parallelism) mode. However, in EP (Expert Parallelism) mode,
|
|
# when there is data on other runner, the current runner is required to execute part of the model.
|
|
if not self.not_need_stop():
|
|
self._execute_empty_input()
|
|
return None
|
|
|
|
# 1. Prepare inputs of model and decoder.
|
|
# sampler create async operation
|
|
skip_idx_list = self._get_skip_idx(model_forward_batch)
|
|
self._prepare_inputs()
|
|
self.sampler.pre_process(skip_idx_list)
|
|
|
|
# 2. Padding inputs for cuda grph
|
|
|
|
# 3. Execute model
|
|
# TODO(gongshaotian): Use seq_lens_encoder to set is_decode_batch
|
|
is_decode_batch = not ((self.share_inputs["seq_lens_this_time"]
|
|
> 1).sum() > 0)
|
|
self.forward_meta.step_use_cudagraph = self.use_cudagraph and is_decode_batch
|
|
self.forward_meta.is_decode_batch = is_decode_batch
|
|
model_output = self.model(
|
|
ids_remove_padding=self.share_inputs["ids_remove_padding"],
|
|
forward_meta=self.forward_meta)
|
|
|
|
hiddden_states = rebuild_padding(
|
|
model_output,
|
|
self.share_inputs["cum_offsets"],
|
|
self.share_inputs["seq_lens_this_time"],
|
|
self.share_inputs["seq_lens_decoder"],
|
|
self.share_inputs["seq_lens_encoder"],
|
|
self.share_inputs["output_padding_offset"]
|
|
if self.speculative_decoding else None,
|
|
self.parallel_config.max_model_len,
|
|
)
|
|
|
|
# 4. Compute logits, Sample
|
|
logits = self.model.compute_logits(hiddden_states)
|
|
|
|
if not self.speculative_decoding:
|
|
set_value_by_flags_and_idx(
|
|
self.share_inputs["pre_ids"],
|
|
self.share_inputs["input_ids"],
|
|
self.share_inputs["seq_lens_this_time"],
|
|
self.share_inputs["seq_lens_encoder"],
|
|
self.share_inputs["seq_lens_decoder"],
|
|
self.share_inputs["step_idx"],
|
|
self.share_inputs["stop_flags"],
|
|
)
|
|
sampled_token_ids = self.sampler(
|
|
logits,
|
|
self.sampling_metadata,
|
|
skip_idx_list,
|
|
)
|
|
if self.parallel_config.tensor_parallel_degree > 1:
|
|
paddle.distributed.broadcast(sampled_token_ids, 0)
|
|
|
|
else:
|
|
self.sampler(logits, self.sampling_metadata,
|
|
self.parallel_config.max_model_len, self.share_inputs)
|
|
sampled_token_ids = None
|
|
if self.parallel_config.tensor_parallel_degree > 1:
|
|
paddle.distributed.broadcast(
|
|
self.share_inputs["accept_tokens"], 0)
|
|
paddle.distributed.broadcast(self.share_inputs["accept_num"],
|
|
0)
|
|
paddle.distributed.broadcast(self.share_inputs["step_idx"], 0)
|
|
paddle.distributed.broadcast(self.share_inputs["stop_flags"],
|
|
0)
|
|
|
|
# 5. Post Process
|
|
model_output_data = ModelOutputData(
|
|
next_tokens=self.share_inputs["next_tokens"],
|
|
stop_flags=self.share_inputs["stop_flags"],
|
|
step_idx=self.share_inputs["step_idx"],
|
|
max_dec_len=self.share_inputs["max_dec_len"],
|
|
pre_ids=self.share_inputs["pre_ids"],
|
|
seq_lens_this_time=self.share_inputs["seq_lens_this_time"],
|
|
eos_token_id=self.share_inputs["eos_token_id"],
|
|
not_need_stop=self.share_inputs["not_need_stop"],
|
|
input_ids=self.share_inputs["input_ids"],
|
|
stop_nums=self.share_inputs["stop_nums"],
|
|
seq_lens_encoder=self.share_inputs["seq_lens_encoder"],
|
|
seq_lens_decoder=self.share_inputs["seq_lens_decoder"],
|
|
is_block_step=self.share_inputs["is_block_step"],
|
|
full_hidden_states=model_output,
|
|
msg_queue_id=self.parallel_config.msg_queue_id,
|
|
mp_rank=self.local_rank,
|
|
use_ep=self.parallel_config.use_ep,
|
|
draft_tokens=self.share_inputs["draft_tokens"]
|
|
if self.speculative_decoding else None,
|
|
actual_draft_token_num=self.share_inputs["actual_draft_token_num"]
|
|
if self.speculative_decoding else None,
|
|
accept_tokens=self.share_inputs["accept_tokens"]
|
|
if self.speculative_decoding else None,
|
|
accept_num=self.share_inputs["accept_num"]
|
|
if self.speculative_decoding else None)
|
|
|
|
if self.speculative_config.method in ["mtp"] and \
|
|
self.parallel_config.splitwise_role == "prefill":
|
|
skip_save_output = True
|
|
else:
|
|
skip_save_output = False
|
|
post_process(sampled_token_ids=sampled_token_ids,
|
|
model_output=model_output_data,
|
|
save_each_rank=self.parallel_config.use_ep,
|
|
speculative_decoding=self.speculative_decoding,
|
|
skip_save_output=skip_save_output)
|
|
|
|
# 6. Speculative decode
|
|
if self.speculative_decoding:
|
|
if self.speculative_method == "mtp":
|
|
self.proposer.run(full_hidden_states=model_output)
|
|
else:
|
|
self.proposer.run(share_inputs=self.share_inputs)
|
|
|
|
# 7. Updata 'infer_seed' and step_cuda()
|
|
self.share_inputs["infer_seed"].add_(self.infer_seed_increment)
|
|
self.share_inputs["infer_seed"][:] %= self.MAX_INFER_SEED
|
|
step_cuda(
|
|
self.share_inputs,
|
|
self.parallel_config.block_size,
|
|
self.parallel_config.enc_dec_block_num,
|
|
self.speculative_config,
|
|
self.parallel_config.enable_prefix_caching,
|
|
)
|
|
|
|
self._update_chunked_prefill(model_forward_batch)
|
|
self._add_cache(model_forward_batch)
|
|
return None
|
|
|
|
def _add_cache(self, model_forward_batch) -> None:
|
|
"""
|
|
Add cache for guided decoding.
|
|
"""
|
|
if self.guided_backend is None:
|
|
return
|
|
|
|
for request in model_forward_batch:
|
|
logits_cached = request.get("logits_cached", None)
|
|
if logits_cached is None or logits_cached:
|
|
continue
|
|
|
|
request.logits_cached = True
|
|
if isinstance(request.logits_processor, LogitsProcessorBase):
|
|
self.guided_backend.add_cache(request.schemata_key,
|
|
request.logits_processor)
|
|
else:
|
|
self.guided_backend.add_cache(
|
|
request.schemata_key, request.logits_processor.result())
|
|
|
|
def _execute_empty_input(self) -> None:
|
|
"""
|
|
In certain scenarios, such as during EP,
|
|
the runner needs to execute partial modules of the model without input data.
|
|
This requires the model to implement the `empty_input_forward` method.
|
|
"""
|
|
if hasattr(self.model, "empty_input_forward"):
|
|
self.model.empty_input_forward()
|
|
else:
|
|
raise ValueError(
|
|
f"{type(self.model)} has no attribute 'empty_input_forward")
|
|
|
|
def profile_run(self) -> None:
|
|
"""Execute a forward pass with dummy inputs to profile the memory usage of the model."""
|
|
|
|
# Initialize kv cache for profile run. After profile run kv cache will be reset.
|
|
# TODO(gongshaotian): Optimize the management logic of kvcache
|
|
self.num_gpu_blocks = self.parallel_config.max_block_num
|
|
self.initialize_kv_cache()
|
|
|
|
# 1. Profile with multimodal encoder & encoder cache
|
|
|
|
# 2. Dummy run
|
|
self._dummy_run(num_tokens=self.parallel_config.max_num_batched_tokens,
|
|
batch_size=min(self.parallel_config.max_num_seqs, 3))
|
|
|
|
# 3. gc
|
|
self.clear_cache()
|
|
|
|
if self.speculative_method in ["mtp"]:
|
|
self.proposer.clear_dummy_input()
|
|
|
|
def update_share_input_block_num(self, num_gpu_blocks: int) -> None:
|
|
"""
|
|
Set a globally unified block number and update the model's shared input.
|
|
Args:
|
|
num_gpu_blocks:
|
|
"""
|
|
self.num_gpu_blocks = num_gpu_blocks
|
|
|
|
# Reset block table and kv cache with global block num
|
|
if not (self.parallel_config.enable_prefix_caching \
|
|
or self.parallel_config.splitwise_role != "mixed"):
|
|
self.initialize_kv_cache()
|
|
|
|
# Reset free list
|
|
free_list = list(
|
|
range(
|
|
self.num_gpu_blocks - 1,
|
|
int(self.num_gpu_blocks * self.parallel_config.kv_cache_ratio)
|
|
- 1, -1))
|
|
self.free_list_len = len(free_list)
|
|
self.share_inputs.update({
|
|
"free_list":
|
|
paddle.to_tensor(free_list, dtype="int32"),
|
|
"free_list_len":
|
|
paddle.full([1], self.free_list_len, dtype="int32"),
|
|
})
|
|
|
|
self.parallel_config.do_profile = False
|
|
|
|
if self.speculative_method in ["mtp"]:
|
|
self.proposer.update_block_num(num_gpu_blocks)
|
|
|
|
def cal_theortical_kvcache(self):
|
|
"""
|
|
Calculate the total block memory required at the model level
|
|
TODO(gongshaotian): Move to Attention Backend
|
|
"""
|
|
"""
|
|
Byte of dtype:
|
|
- default(bf16): 2
|
|
- cache_int8: 1
|
|
- cache_int4:
|
|
"""
|
|
cache_quant_dtype = None
|
|
if (self.quant_config
|
|
and hasattr(self.quant_config, "kv_cache_quant_type")
|
|
and self.quant_config.kv_cache_quant_type is not None):
|
|
cache_quant_dtype = self.quant_config.kv_cache_quant_type
|
|
|
|
if cache_quant_dtype is not None: # int8, int8_zp, fp8, fp8_zp
|
|
byte_of_dtype = 1
|
|
else: # default
|
|
byte_of_dtype = 2
|
|
|
|
hidden_dim = self.model_config.head_dim * self.model_config.kv_num_heads
|
|
# NOTE(liuzichang): Implement multi-layer MTP architecture in the future
|
|
num_layers = self.model_config.num_layers + \
|
|
self.speculative_config.num_gpu_block_expand_ratio if \
|
|
self.speculative_method in [
|
|
"mtp"
|
|
] else self.model_config.num_layers
|
|
required_memory = (
|
|
byte_of_dtype * 2 * # k + v
|
|
(self.parallel_config.block_size * hidden_dim) * num_layers)
|
|
return required_memory
|
|
|
|
def not_need_stop(self) -> bool:
|
|
""" """
|
|
return self.share_inputs["not_need_stop"][0]
|