Files
FastDeploy/fastdeploy/worker/gpu_model_runner.py
Yuanle Liu 240bdac2a4
Some checks failed
Deploy GitHub Pages / deploy (push) Has been cancelled
[feat] support fa3 backend for pd disaggregated (#2695)
* support fa3 backend run in pd disaggregated

* support fa3 backend run in pd disaggregated

* support fa3 backend run in pd disaggregated

* support fa3 backend run in pd disaggregated

* delete use_fast_ffn
2025-07-03 22:33:27 +08:00

1224 lines
56 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import os
import time
from typing import List, Optional
import numpy as np
import paddle
import paddle.nn as nn
from paddleformers.utils.log import logger
from fastdeploy.config import FDConfig
from fastdeploy.engine.request import Request
from fastdeploy.model_executor.guided_decoding import get_guided_backend
from fastdeploy.model_executor.guided_decoding.base_guided_decoding import \
LogitsProcessorBase
from fastdeploy.model_executor.layers.attention import get_attention_backend
from fastdeploy.model_executor.layers.attention.base_attention_backend import \
AttentionBackend
from fastdeploy.model_executor.layers.rotary_embedding import get_rope
from fastdeploy.model_executor.layers.sample.meta_data import SamplingMetadata
from fastdeploy.model_executor.layers.sample.sampler import (
Sampler, SpeculativeSampler)
from fastdeploy.model_executor.model_loader import get_model_from_loader
from fastdeploy.model_executor.ops.gpu import (set_value_by_flags_and_idx,
share_external_data)
from fastdeploy.model_executor.pre_and_post_process import (post_process,
pre_process,
rebuild_padding,
step_cuda)
from fastdeploy.spec_decode import MTPProposer, NgramProposer
from fastdeploy.worker.forward_meta import ForwardMeta
from fastdeploy.worker.model_runner_base import ModelRunnerBase
from fastdeploy.worker.output import ModelOutputData, ModelRunnerOutput
class GPUModelRunner(ModelRunnerBase):
""" """
def __init__(
self,
fd_config: FDConfig,
device: str, # logic device
device_id: int, # physical device id
rank: int,
local_rank: int):
super().__init__(fd_config=fd_config, device=device)
self.rank = rank
self.local_rank = local_rank
self.device_id = device_id
self.speculative_method = self.fd_config.speculative_config.method
self.speculative_decoding = self.speculative_method is not None
self.guided_backend = None
if self.fd_config.parallel_config.guided_decoding_backend != "off":
self.guided_backend = get_guided_backend(fd_config=self.fd_config)
# Sampler
if not self.speculative_decoding:
self.sampler = Sampler()
else:
self.sampler = SpeculativeSampler(fd_config)
# Lazy initialize kv cache after model loading
# self.kv_caches: list[paddle.Tensor] = []
# Cuda Graph
self.use_cudagraph = self.graph_opt_config.use_cudagraph
self.cudagraph_capture_sizes = list(
reversed(self.graph_opt_config.cudagraph_capture_sizes))
self.cudagraph_num_of_warmups = self.graph_opt_config.cudagraph_num_of_warmups
self.input_ids = paddle.zeros(self.parallel_config.max_num_seqs,
dtype='int32')
# Initialize share inputs
self._init_share_inputs(self.parallel_config.max_num_seqs)
self.infer_seed_increment = paddle.full(
shape=[self.parallel_config.max_num_seqs, 1],
fill_value=4,
dtype="int64")
self.restore_chunked_prefill_request = dict()
# Initialize attention Backend
# Note(gonshaotian): Currently, all attention layers share one attention backend instance.
# In the future, we will expand it as a list.
self.attn_backends: list[AttentionBackend] = []
# self.attn_metadatas: list[AttentionMetadata] = []
self.initialize_attn_backend()
# Forward meta store the global meta information of the forward
self.forward_meta: ForwardMeta = None
# Postprocess Env params
os.environ["INFERENCE_MSG_QUEUE_ID"] = str(
self.local_rank +
int(self.parallel_config.engine_worker_queue_port))
def prefill_finished(self):
"""
check whether prefill stage finished
"""
if int(paddle.max(self.share_inputs['seq_lens_encoder'])) != 0:
return 1
else:
return 0
def init_speculative_proposer(self):
"""
Init speculative proposer
"""
if self.speculative_method == "ngram":
self.proposer = NgramProposer(self.fd_config)
elif self.speculative_method == "mtp":
self.proposer = MTPProposer(self.fd_config, self.get_model(),
self.local_rank, self.device_id,
self.share_inputs)
else:
self.proposer = None
def _init_logits_processor(self, request):
"""
init logits processor for guided decoding
"""
assert self.guided_backend is not None, "guided_backend is None, use "\
"--guided-decoding-backend to specify the backend at server startup."
if request.guided_json is not None:
schemata_key = ("json", request.guided_json)
elif request.guided_regex is not None:
schemata_key = ("regex", request.guided_regex)
elif request.guided_grammar is not None:
schemata_key = ("grammar", request.guided_grammar)
elif request.structural_tag is not None:
schemata_key = ("structural_tag", request.structural_tag)
return self.guided_backend.get_logits_processor(
schemata_key=schemata_key), schemata_key
def insert_prefill_inputs(self, req_dicts: List[Request]):
"""
Process inputs for prefill tasks and insert it to share_inputs buffer
TODO(gongshaotian): Refactor this func
"""
# NOTE(luotingdan): Lazy initialize kv cache
if "caches" not in self.share_inputs:
self.initialize_kv_cache()
# NOTE(luotingdan): Set environment variable of prefill node
if req_dicts[-1].disaggregate_info is not None and req_dicts[
-1].disaggregate_info["role"] == "prefill":
os.environ['PREFILL_NODE_ONE_STEP_STOP'] = "1"
req_len = len(req_dicts)
for i in range(req_len):
request = req_dicts[i]
idx = request.idx
length = len(request.prompt_token_ids)
prefill_tokens = []
if (request.guided_json is not None
or request.guided_regex is not None
or request.structural_tag is not None
or request.guided_grammar is not None):
logits_info, schemata_key = self._init_logits_processor(
request)
request.logits_processor, request.logits_cached = logits_info
request.schemata_key = schemata_key
# Is Decode Node
if req_dicts[i].disaggregate_info is not None and req_dicts[
i].disaggregate_info["role"] == "decode":
prefill_tokens.append(request.prompt_token_ids[0])
self.share_inputs["pre_ids"][idx:idx +
1] = request.prompt_token_ids[-1]
self.share_inputs["input_ids"][idx:idx + 1,
0] = request.prompt_token_ids[0]
self.share_inputs['seq_lens_encoder'][idx:idx + 1] = 0
self.share_inputs['seq_lens_decoder'][idx:idx + 1] = length
self.share_inputs['seq_lens_this_time'][idx:idx + 1] = 1
self.share_inputs['step_seq_lens_encoder'][idx:idx + 1] = 0
self.share_inputs['step_seq_lens_decoder'][idx:idx +
1] = length
self.share_inputs['step_idx'][idx:idx + 1] = 1
if self.speculative_decoding:
num_prefill_send_token = self.speculative_config.num_speculative_tokens + 1
self.share_inputs['draft_tokens'][idx:idx + 1, 0:num_prefill_send_token] =\
paddle.to_tensor(request.draft_token_ids[0:num_prefill_send_token], dtype="int64")
self.share_inputs['seq_lens_this_time'][
idx:idx + 1] = num_prefill_send_token
else:
self.share_inputs["pre_ids"][idx:idx + 1] = -1
self.share_inputs["step_idx"][idx:idx + 1] = 0
self.share_inputs["input_ids"][idx:idx +
1, :length] = np.array(
request.prompt_token_ids)
# Use chunked prefill
if self.parallel_config.enable_chunked_prefill:
request.set("chunk_idx", 1)
logger.info(
f"prefill_chunk_info: {request.prefill_chunk_info}")
token_chunk_size = request.prefill_chunk_info[0]
self.share_inputs["seq_lens_this_time"][
idx:idx + 1] = token_chunk_size
self.share_inputs['input_ids'][
idx, :token_chunk_size] = np.array(
request.prompt_token_ids[:token_chunk_size])
self.share_inputs['step_seq_lens_encoder'][
idx:idx + 1] = token_chunk_size
self.share_inputs['seq_lens_encoder'][idx:idx +
1] = token_chunk_size
self.share_inputs['seq_lens_decoder'][
idx:idx + 1] = request.get("seq_lens_decoder", 0)
self.share_inputs['step_seq_lens_decoder'][
idx:idx + 1] = request.get("seq_lens_decoder", 0)
else:
self.share_inputs['seq_lens_decoder'][
idx:idx + 1] = request.get("seq_lens_decoder", 0)
self.share_inputs['step_seq_lens_decoder'][
idx:idx + 1] = request.get("seq_lens_decoder", 0)
self.share_inputs['seq_lens_this_time'][idx:idx +
1] = length
self.share_inputs['step_seq_lens_encoder'][idx:idx +
1] = length
self.share_inputs['seq_lens_encoder'][idx:idx + 1] = length
if len(request.eos_token_ids
) < self.parallel_config.eos_tokens_lens:
request.eos_token_ids.append(request.eos_token_ids[0])
self.share_inputs["eos_token_id"][:] = np.array(
request.eos_token_ids, dtype="int64").reshape(-1, 1)
self.share_inputs["top_p"][idx:idx + 1] = request.get("top_p", 0.7)
self.share_inputs["temperature"][idx:idx + 1] = request.get(
"temperature", 0.95)
self.share_inputs["penalty_score"][idx:idx + 1] = request.get(
"repetition_penalty", 1.0)
self.share_inputs["frequency_score"][idx:idx + 1] = request.get(
"frequency_penalty", 0.0)
self.share_inputs["presence_score"][idx:idx + 1] = request.get(
"presence_penalty", 0.0)
self.share_inputs["min_dec_len"][idx:idx + 1] = request.get(
"min_tokens", 1)
self.share_inputs["max_dec_len"][idx:idx + 1] = request.get(
"max_tokens", self.model_config.max_length)
self.share_inputs["stop_flags"][idx:idx + 1] = False
self.share_inputs["first_token_ids"][
idx:idx + 1] = self.share_inputs["input_ids"][idx:idx + 1, :1]
self.share_inputs["ori_seq_lens_encoder"][idx:idx + 1] = length
if request.get("seed") is not None:
self.share_inputs["infer_seed"][idx:idx +
1] = request.get("seed")
encoder_block_num = len(request.get("block_tables"))
self.share_inputs["encoder_block_lens"][idx:idx +
1] = encoder_block_num
self.share_inputs["block_tables"][idx:idx + 1, :] = -1
self.share_inputs["block_tables"][
idx:idx + 1, :encoder_block_num] = np.array(
request.block_tables, dtype="int32")
if request.get("stop_token_ids") is not None and request.get(
"stop_seqs_len") is not None:
stop_seqs_num = len(request.get("stop_seqs_len"))
for i in range(stop_seqs_num,
self.model_config.max_stop_seqs_num):
request.stop_seqs_len.append(0)
self.share_inputs["stop_seqs_len"][:] = np.array(
request.stop_seqs_len, dtype="int32")
self.share_inputs["stop_seqs"][:stop_seqs_num, :len(
request.get("stop_token_ids")[0])] = np.array(
request.get("stop_token_ids"), dtype="int64")
self.sampler.apply_logits_processor(
idx, request.get("logits_processor"), prefill_tokens)
self.share_inputs["not_need_stop"][0] = True
if self.speculative_method in ["mtp"]:
self.proposer.insert_prefill_inputs(req_dicts)
def _dummy_prefill_inputs(self, num_tokens: int, batch_size: int,
expected_decode_len: int):
""" Set dummy prefill inputs to share_inputs """
# NOTE(gongshaotian): The maximum decoding length is equal to the expected decoded tokens plus the eos token
max_dec_len = expected_decode_len + 1
full_length = min(num_tokens // batch_size,
self.parallel_config.max_model_len - max_dec_len)
input_length = int(full_length * self.parallel_config.kv_cache_ratio)
block_num = (
input_length + self.parallel_config.block_size - 1
) // self.parallel_config.block_size + self.parallel_config.enc_dec_block_num
for i in range(batch_size):
idx = i
self.share_inputs["input_ids"][idx:idx +
1, :input_length] = np.array(
[5] * input_length)
self.share_inputs["eos_token_id"][:] = np.array(
[2], dtype="int64").reshape(-1, 1)
self.share_inputs["seq_lens_this_time"][idx:idx + 1] = input_length
self.share_inputs["step_seq_lens_encoder"][idx:idx +
1] = input_length
self.share_inputs["seq_lens_encoder"][idx:idx + 1] = input_length
self.share_inputs["seq_lens_decoder"][idx:idx + 1] = 0
self.share_inputs["step_idx"][idx:idx + 1] = 0
self.share_inputs["max_dec_len"][idx:idx + 1] = max_dec_len
self.share_inputs["stop_flags"][idx:idx + 1] = False
self.share_inputs["first_token_ids"][
idx:idx + 1] = self.share_inputs["input_ids"][idx:idx + 1, :1]
self.share_inputs["ori_seq_lens_encoder"][idx:idx +
1] = input_length
self.share_inputs["encoder_block_lens"][idx:idx + 1] = block_num
self.share_inputs["block_tables"][idx : idx + 1, :block_num] = np.arange(idx * block_num, \
(idx + 1) * block_num, 1)
def _init_share_inputs(self, max_num_seqs: int):
"""Initialize all share buffers for model inputs.
Note: In the future, we may abandon share buffers.
"""
self.MAX_INFER_SEED = 9223372036854775806
self.share_inputs = {}
self.share_inputs["pre_ids"] = paddle.full(
[max_num_seqs, self.parallel_config.max_model_len],
-1,
dtype='int64')
self.share_inputs["input_ids"] = paddle.full(
[max_num_seqs, self.parallel_config.max_model_len],
self.parallel_config.pad_token_id,
dtype='int64')
self.share_inputs["eos_token_id"] = paddle.full(
[self.parallel_config.eos_tokens_lens, 1], 0, dtype='int64')
self.share_inputs["top_p"] = paddle.full([max_num_seqs, 1],
self.model_config.top_p,
dtype='float32')
self.share_inputs["temperature"] = paddle.full(
[max_num_seqs, 1], self.model_config.temperature, dtype='float32')
self.share_inputs["penalty_score"] = paddle.full(
[max_num_seqs, 1],
self.model_config.penalty_score,
dtype='float32')
self.share_inputs["frequency_score"] = paddle.full(
[max_num_seqs, 1],
self.model_config.frequency_score,
dtype='float32')
self.share_inputs["presence_score"] = paddle.full(
[max_num_seqs, 1],
self.model_config.presence_score,
dtype='float32')
self.share_inputs["min_dec_len"] = paddle.full(
[max_num_seqs, 1], self.model_config.min_length, dtype='int64')
self.share_inputs["max_dec_len"] = paddle.full(
[max_num_seqs, 1], self.model_config.max_length, dtype='int64')
self.share_inputs["min_length"] = paddle.full(
[max_num_seqs, 1], self.model_config.min_length, dtype='int64')
self.share_inputs["max_length"] = paddle.full(
[max_num_seqs, 1], self.model_config.max_length, dtype='int64')
self.share_inputs["seq_lens_this_time"] = paddle.full(max_num_seqs,
0,
dtype='int32')
self.share_inputs["seq_lens_encoder"] = paddle.full([max_num_seqs, 1],
0,
dtype='int32')
self.share_inputs["seq_lens_decoder"] = paddle.full([max_num_seqs, 1],
0,
dtype='int32')
self.share_inputs["step_seq_lens_encoder"] = paddle.full(
[max_num_seqs, 1], 0, dtype='int32')
self.share_inputs["step_seq_lens_decoder"] = paddle.full(
[max_num_seqs, 1], 0, dtype='int32')
self.share_inputs["step_idx"] = paddle.full([max_num_seqs, 1],
0,
dtype='int64')
self.share_inputs["not_need_stop"] = paddle.full(
[1], False,
dtype='bool').cpu() # TODO(gongshaotian): move to pinnd memory
self.share_inputs["stop_flags"] = paddle.full([max_num_seqs, 1],
True,
dtype='bool')
self.share_inputs["stop_nums"] = paddle.full([1],
max_num_seqs,
dtype='int64')
self.share_inputs["bad_tokens"] = paddle.full([1], -1, dtype='int64')
self.share_inputs["next_tokens"] = paddle.full([max_num_seqs, 1],
-1,
dtype='int64')
self.share_inputs["is_block_step"] = paddle.full([max_num_seqs],
False,
dtype='bool')
self.share_inputs["encoder_block_lens"] = paddle.full([max_num_seqs],
0,
dtype='int32')
self.share_inputs["step_block_list"] = paddle.full([max_num_seqs],
-1,
dtype='int32')
self.share_inputs["step_lens"] = paddle.full([1], 0, dtype='int32')
self.share_inputs["recover_block_list"] = paddle.full([max_num_seqs],
-1,
dtype='int32')
self.share_inputs["recover_lens"] = paddle.full([1], 0, dtype='int32')
self.share_inputs["need_block_list"] = paddle.full([max_num_seqs],
-1,
dtype='int32')
self.share_inputs["need_block_len"] = paddle.full([1],
0,
dtype='int32')
self.share_inputs["used_list_len"] = paddle.full([max_num_seqs],
0,
dtype='int32')
self.share_inputs["infer_seed"] = paddle.full([max_num_seqs, 1],
0,
dtype='int64')
self.share_inputs["first_token_ids"] = paddle.full([max_num_seqs, 1],
-1,
dtype='int64')
self.share_inputs["ori_seq_lens_encoder"] = paddle.full(
[max_num_seqs, 1], 0, dtype='int32')
self.share_inputs["system_lens"] = paddle.full([max_num_seqs, 1],
0,
dtype='int32')
self.share_inputs["system_ids"] = paddle.full([max_num_seqs, 1],
-1,
dtype='int32')
self.share_inputs["ids_remove_padding"] = paddle.full(
[max_num_seqs * self.parallel_config.max_model_len],
0,
dtype='int64')
self.share_inputs["cum_offsets"] = paddle.full([max_num_seqs, 1],
0,
dtype='int32')
self.share_inputs["padding_offset"] = paddle.full([max_num_seqs, 1],
0,
dtype='int32')
self.share_inputs["cu_seqlens_q"] = paddle.full([max_num_seqs, 1],
0,
dtype='int32')
self.share_inputs["cu_seqlens_k"] = paddle.full([max_num_seqs, 1],
0,
dtype='int32')
# AttentionBackend buffers
self.share_inputs["decoder_batch_ids"] = paddle.full([max_num_seqs, 1],
0,
dtype='int32')
self.share_inputs["decoder_tile_ids_per_batch"] = paddle.full(
[max_num_seqs, 1], 0, dtype='int32')
# Initialize rotary position embedding
tmp_position_ids = paddle.arange(
self.parallel_config.max_model_len).reshape((1, -1))
# TODO(gongshaotian): move to models
self.share_inputs["rope_emb"] = get_rope(
rotary_dim=self.model_config.head_dim,
position_ids=tmp_position_ids,
base=self.model_config.rope_theta,
model_config=self.model_config)
# Set block tables
pre_max_block_num = (
self.parallel_config.max_model_len +
self.parallel_config.block_size - 1
) // self.parallel_config.block_size + self.parallel_config.enc_dec_block_num
self.share_inputs["block_tables"] = paddle.full(
[max_num_seqs, pre_max_block_num], -1, dtype='int32')
# Initialize free list
free_list = list(
range(
self.parallel_config.max_block_num - 1,
int(self.parallel_config.max_block_num *
self.parallel_config.kv_cache_ratio) - 1, -1))
self.free_list_len = len(free_list)
self.share_inputs["free_list"] = paddle.to_tensor(free_list,
dtype="int32")
self.share_inputs["free_list_len"] = paddle.full([1],
self.free_list_len,
dtype="int32")
# Initialize stop seqs
self.share_inputs["stop_seqs_len"] = paddle.full(
[self.model_config.max_stop_seqs_num], 0, dtype="int32")
self.share_inputs["stop_seqs"] = paddle.full([
self.model_config.max_stop_seqs_num,
self.model_config.stop_seqs_max_len
],
-1,
dtype="int32")
if self.speculative_decoding:
max_draft_token_num = self.speculative_config.num_speculative_tokens
self.share_inputs["input_ids_cpu"] = paddle.full(
shape=[max_num_seqs, self.parallel_config.max_model_len],
fill_value=1,
dtype='int64').cpu()
self.share_inputs['accept_tokens'] = paddle.full(
shape=[max_num_seqs, max_draft_token_num + 1],
fill_value=0,
dtype="int64")
self.share_inputs['accept_num'] = paddle.full(shape=[max_num_seqs],
fill_value=0,
dtype='int32')
self.share_inputs['draft_tokens'] = paddle.full(
shape=[max_num_seqs, max_draft_token_num + 1],
fill_value=0,
dtype="int64")
self.share_inputs['actual_draft_token_num'] = paddle.full(
shape=[max_num_seqs],
fill_value=max_draft_token_num,
dtype="int32")
self.share_inputs["output_cum_offsets"] = paddle.full(
shape=[max_num_seqs, 1], fill_value=0, dtype='int32')
self.share_inputs["output_padding_offset"] = paddle.full(
shape=[max_num_seqs * (max_draft_token_num + 1)],
fill_value=0,
dtype="int32")
def _prepare_inputs(self) -> None:
""" prepare the model inputs """
# Remove padding
(
ids_remove_padding,
cum_offsets,
padding_offset,
cu_seqlens_q,
cu_seqlens_k,
output_cum_offsets,
output_padding_offset,
) = pre_process(
self.parallel_config.max_model_len, self.share_inputs["input_ids"],
self.share_inputs["seq_lens_this_time"], self.speculative_decoding,
self.share_inputs["draft_tokens"] if self.speculative_decoding else
None, self.share_inputs["seq_lens_encoder"],
self.share_inputs["seq_lens_decoder"])
self.share_inputs["ids_remove_padding"].copy_(ids_remove_padding,
False)
self.share_inputs["cum_offsets"].copy_(cum_offsets, False)
self.share_inputs["padding_offset"].copy_(padding_offset, False)
self.share_inputs["cu_seqlens_q"].copy_(cu_seqlens_q, False)
self.share_inputs["cu_seqlens_k"].copy_(cu_seqlens_k, False)
# For speculative decoding
if self.speculative_decoding:
self.share_inputs["output_cum_offsets"].copy_(
output_cum_offsets, False)
self.share_inputs["output_padding_offset"].copy_(
output_padding_offset, False)
# Initialize forward meta data
self.initialize_forward_meta()
# Get sampling metadata
self.sampling_metadata = SamplingMetadata(
temperature=self.share_inputs["temperature"],
top_p=self.share_inputs["top_p"],
step_idx=self.share_inputs["step_idx"],
pre_token_ids=self.share_inputs["pre_ids"],
frequency_penalties=self.share_inputs["frequency_score"],
presence_penalties=self.share_inputs["presence_score"],
repetition_penalties=self.share_inputs["penalty_score"],
min_dec_lens=self.share_inputs["min_dec_len"],
bad_words_token_ids=self.share_inputs["bad_tokens"],
eos_token_ids=self.share_inputs["eos_token_id"],
)
def load_model(self) -> None:
""" load or download model """
logger.info(
f"Starting to load model {self.model_config.architectures[0]}")
time_before_load = time.perf_counter()
# 1. Load original model
self.model = get_model_from_loader(fd_config=self.fd_config)
# 1.1 Load RL dynamic model
if self.fd_config.load_config.dynamic_load_weight:
from fastdeploy.rl.dynamic_weight_manager import \
DynamicWeightManager
self.dynamic_weight_manager = DynamicWeightManager(self.fd_config, self.model)
# 2. Load lora model
# 3. Load drafter model(for speculative decoding)
time_after_load = time.perf_counter()
logger.info(
f"Model loading took {time_after_load - time_before_load} seconds")
# 4. Init proposer for speculative method
self.init_speculative_proposer()
def get_model(self) -> nn.Layer:
""" get current model """
return self.model
def initialize_forward_meta(self):
"""
Initialize forward meta and attention meta data
"""
# Initialize forward meta
self.forward_meta = ForwardMeta.init_forward_meta(
self.share_inputs, self.attn_backends[0])
# Initialzie attention meta data
for attn_backend in self.attn_backends:
attn_backend.init_attention_metadata(self.forward_meta)
def clear_cache(self):
"""Clear cached data from shared inputs and forward metadata."""
self.share_inputs.pop("caches", None)
if self.forward_meta is not None:
self.forward_meta.clear_caches()
def clear_parameters(self, pid):
""""dynamic model loader use to clear parameters use for RL"""
self.dynamic_weight_manager.clear_parameters(pid)
self.clear_cache()
paddle.device.cuda.empty_cache()
self.dynamic_weight_manager._log_memory("dynamic weight manager clear all memory")
def update_parameters(self, pid):
""""dynamic model loader use to update parameters use for RL"""
self.dynamic_weight_manager.update_parameters(pid)
self.initialize_kv_cache()
self.dynamic_weight_manager._log_memory("dynamic weight manager update all memory")
def initialize_kv_cache(self) -> None:
"""
Initialize kv cache
"""
cache_kvs = {}
max_block_num = self.num_gpu_blocks
# Get kv cache dtype
cache_type = self.parallel_config.dtype
if (self.quant_config
and hasattr(self.quant_config, "kv_cache_quant_type")
and self.quant_config.kv_cache_quant_type is not None):
cache_type = 'uint8'
# Get kv cache shape
kv_cache_shape = self.attn_backends[0].get_kv_cache_shape(
max_num_blocks=max_block_num)
local_rank = self.local_rank % self.parallel_config.tensor_parallel_degree
if not self.parallel_config.do_profile and (
self.parallel_config.enable_prefix_caching \
or self.parallel_config.splitwise_role != "mixed"):
cache_kvs_list = []
for i in range(self.model_config.num_layers):
key_cache = paddle.empty(shape=[], dtype=cache_type)
key_cache_name = f"key_caches_{i}_rank{local_rank}.device{self.device_id}"
val_cache_name = f"value_caches_{i}_rank{local_rank}.device{self.device_id}"
key_cache = share_external_data(key_cache, key_cache_name,
kv_cache_shape)
cache_kvs_list.append(key_cache)
value_cache = paddle.empty(shape=[], dtype=cache_type)
value_cache = share_external_data(value_cache, val_cache_name,
kv_cache_shape)
cache_kvs_list.append(value_cache)
self.share_inputs["caches"] = cache_kvs_list
else:
for i in range(self.model_config.num_layers):
cache_kvs["key_caches_{}".format(i)] = paddle.full(
shape=kv_cache_shape,
fill_value=0,
dtype=cache_type,
)
cache_kvs["value_caches_{}".format(i)] = paddle.full(
shape=kv_cache_shape,
fill_value=0,
dtype=cache_type,
)
self.share_inputs["caches"] = list(cache_kvs.values())
for value in cache_kvs.values():
del value
paddle.device.cuda.empty_cache()
def initialize_attn_backend(self) -> None:
"""
Initialize attention backends and forward metadata
"""
assert len(self.attn_backends) == 0
# TODO(gongshaotian): Get rank from config
num_heads = self.model_config.num_attention_heads // self.parallel_config.tensor_parallel_degree
self.model_config.kv_num_heads = int(
self.model_config.num_key_value_heads
) // self.parallel_config.tensor_parallel_degree
head_dim = self.model_config.head_dim
# Get the attention backend
attn_cls = get_attention_backend()
attn_backend = attn_cls(self.fd_config,
kv_num_heads=self.model_config.kv_num_heads,
num_heads=num_heads,
head_dim=head_dim)
if attn_backend is None:
raise NotImplementedError(
"Attention backend which you specified is not supported, please set FD_ATTENTION_BACKEND correctly."
)
self.attn_backends.append(attn_backend)
def _dummy_run(self,
num_tokens: paddle.Tensor,
batch_size: paddle.Tensor,
expected_decode_len: int = 1,
in_capturing: bool = False) -> paddle.Tensor:
"""
Use dummy inputs to run before formal execution.
Args:
num_tokens:
expected_decode_len: Expected number of tokens generated
"""
self._dummy_prefill_inputs(num_tokens=num_tokens,
batch_size=batch_size,
expected_decode_len=expected_decode_len)
if self.speculative_method in ["mtp"]:
self.proposer.dummy_prefill_inputs(
num_tokens=num_tokens,
batch_size=batch_size,
expected_decode_len=expected_decode_len)
while True:
# 1. Compute real num_tokens
self._prepare_inputs()
# 2. Initialize attention backend and forward meta data
# 3. Prepare lora
# 4. Run model
is_decode_batch = not ((self.share_inputs["seq_lens_this_time"]
> 1).sum() > 0)
self.forward_meta.step_use_cudagraph = is_decode_batch and in_capturing
self.forward_meta.is_decode_batch = is_decode_batch
model_output = self.model(
ids_remove_padding=self.share_inputs["ids_remove_padding"],
forward_meta=self.forward_meta)
hiddden_states = rebuild_padding(
model_output,
self.share_inputs["cum_offsets"],
self.share_inputs["seq_lens_this_time"],
self.share_inputs["seq_lens_decoder"],
self.share_inputs["seq_lens_encoder"],
self.share_inputs["output_padding_offset"]
if self.speculative_decoding else
None, # speculative decoding requires
self.parallel_config.max_model_len,
)
# 5. Execute spec decode
logits = self.model.compute_logits(hiddden_states)
if not self.speculative_decoding:
set_value_by_flags_and_idx(
self.share_inputs["pre_ids"],
self.share_inputs["input_ids"],
self.share_inputs["seq_lens_this_time"],
self.share_inputs["seq_lens_encoder"],
self.share_inputs["seq_lens_decoder"],
self.share_inputs["step_idx"],
self.share_inputs["stop_flags"],
)
sampled_token_ids = self.sampler(logits,
self.sampling_metadata)
if self.parallel_config.tensor_parallel_degree > 1:
paddle.distributed.broadcast(sampled_token_ids, 0)
else:
self.sampler(logits, self.sampling_metadata,
self.parallel_config.max_model_len,
self.share_inputs)
sampled_token_ids = None
if self.parallel_config.tensor_parallel_degree > 1:
paddle.distributed.broadcast(
self.share_inputs["accept_tokens"], 0)
paddle.distributed.broadcast(
self.share_inputs["accept_num"], 0)
paddle.distributed.broadcast(self.share_inputs["step_idx"],
0)
paddle.distributed.broadcast(
self.share_inputs["stop_flags"], 0)
# 6. post process
model_output_data = ModelOutputData(
next_tokens=self.share_inputs["next_tokens"],
stop_flags=self.share_inputs["stop_flags"],
step_idx=self.share_inputs["step_idx"],
max_dec_len=self.share_inputs["max_dec_len"],
pre_ids=self.share_inputs["pre_ids"],
seq_lens_this_time=self.share_inputs["seq_lens_this_time"],
eos_token_id=self.share_inputs["eos_token_id"],
not_need_stop=self.share_inputs["not_need_stop"],
input_ids=self.share_inputs["input_ids"],
stop_nums=self.share_inputs["stop_nums"],
seq_lens_encoder=self.share_inputs["seq_lens_encoder"],
seq_lens_decoder=self.share_inputs["seq_lens_decoder"],
is_block_step=self.share_inputs["is_block_step"],
full_hidden_states=model_output,
msg_queue_id=self.parallel_config.msg_queue_id,
mp_rank=self.local_rank,
use_ep=self.parallel_config.use_ep,
draft_tokens=self.share_inputs["draft_tokens"]
if self.speculative_decoding else None,
actual_draft_token_num=self.
share_inputs["actual_draft_token_num"]
if self.speculative_decoding else None,
accept_tokens=self.share_inputs["accept_tokens"]
if self.speculative_decoding else None,
accept_num=self.share_inputs["accept_num"]
if self.speculative_decoding else None)
post_process(sampled_token_ids=sampled_token_ids,
model_output=model_output_data,
speculative_decoding=self.speculative_decoding,
skip_save_output=True)
if self.speculative_decoding:
if self.speculative_method == "mtp":
self.proposer.run(full_hidden_states=model_output)
else:
self.proposer.run(share_inputs=self.share_inputs)
# 7. Updata 'infer_seed' and step_cuda()
self.share_inputs["infer_seed"].add_(self.infer_seed_increment)
self.share_inputs["infer_seed"][:] %= self.MAX_INFER_SEED
step_cuda(self.share_inputs, self.parallel_config.block_size,
self.parallel_config.enc_dec_block_num,
self.speculative_config,
self.parallel_config.enable_prefix_caching)
if int((self.share_inputs['seq_lens_this_time'] > 0).sum()) == 0:
break
def _update_chunked_prefill(self, tasks):
"""
更新chunked prefill相关参数
"""
if not self.parallel_config.enable_chunked_prefill:
return
for task in tasks:
if task.get("prefill_chunk_info", None) is None:
continue
if task.chunk_idx > len(task.prefill_chunk_info):
continue
self.restore_chunked_prefill_request[task.request_id] = task
for id, task in list(self.restore_chunked_prefill_request.items()):
idx = task.idx
logger.debug(
f"{task.request_id} chunked prefill {task.chunk_idx}/{len(task.prefill_chunk_info)}"
)
start_idx = sum(task.prefill_chunk_info[:task.chunk_idx])
if task.chunk_idx == len(task.prefill_chunk_info):
self.share_inputs["seq_lens_this_time"][idx:idx + 1] = 1
self.share_inputs['seq_lens_encoder'][idx:idx + 1] = 0
self.share_inputs["step_idx"][idx:idx + 1] = 1
self.share_inputs["seq_lens_decoder"][
idx:idx + 1] = start_idx + task.get("seq_lens_decoder", 0)
del self.restore_chunked_prefill_request[task.request_id]
else:
token_chunk_size = task.prefill_chunk_info[task.chunk_idx]
self.share_inputs["seq_lens_this_time"][idx:idx +
1] = token_chunk_size
self.share_inputs['input_ids'][
idx, :token_chunk_size] = np.array(
task.prompt_token_ids[start_idx:start_idx +
token_chunk_size])
self.share_inputs['seq_lens_encoder'][idx:idx +
1] = token_chunk_size
self.share_inputs["step_idx"][idx:idx + 1] = 0
self.share_inputs["seq_lens_decoder"][
idx:idx + 1] = start_idx + task.get("seq_lens_decoder", 0)
task.chunk_idx += 1
def _dummy_sampler_run(self) -> paddle.Tensor:
""" """
pass
def capture_model(self) -> None:
"""
Trigger CUDA Graph capture for all shapes in 'CudaGraphConfig.cudagraph_capture_sizes'
"""
if not self.use_cudagraph:
logger.info(
"Skipping CUDA graph capture. Please check GraphOptimizationConfig"
)
return
time_before_capture = time.perf_counter()
expected_decode_len = 1
capture_sizes = self.cudagraph_capture_sizes.copy()
for batch_size in sorted(capture_sizes, reverse=True):
self._dummy_run(num_tokens=self.parallel_config.max_model_len,
batch_size=batch_size,
in_capturing=True,
expected_decode_len=expected_decode_len)
logger.info(
f"Warm up the model with the batch size:{batch_size}, num tokens:{expected_decode_len}"
)
time_after_capture = time.perf_counter()
logger.info(
f"Cuda Graph capturing took {time_after_capture - time_before_capture} seconds"
)
def _get_skip_idx(self, model_forward_batch):
"""
Get the index of the request that needs to be skipped during execution.
Args:
model_forward_batch: A list of requests to be executed by this runner.
Returns:
A list of indices corresponding to the requests that need to be skipped.
"""
skip_idx_list = []
if not self.parallel_config.enable_chunked_prefill or self.guided_backend is None:
return skip_idx_list
for task in model_forward_batch:
if task.get("prefill_chunk_info",
None) is None or task.chunk_idx >= len(
task.prefill_chunk_info):
continue
skip_idx_list.append(task.idx)
for task in self.restore_chunked_prefill_request.values():
if task.idx in skip_idx_list or task.chunk_idx >= len(
task.prefill_chunk_info):
continue
skip_idx_list.append(task.idx)
return skip_idx_list
def execute_model(
self,
model_forward_batch: Optional[List[Request]] = None,
) -> Optional[ModelRunnerOutput]:
"""
The Entrance of model execute.
Args:
model_forward_batch: 'Request' contains information related to prompt and is an abstract
class at the server level, which is too granular for ModelRunner.
We plan to replace it with 'ModelForwardBatch'.
intermediate_tensors:
"""
# Note(@wufeisheng): If `not_need_stop`` is False, it means the current worker is in an idle state.
# This logic is not used in TP (Tensor Parallelism) mode. However, in EP (Expert Parallelism) mode,
# when there is data on other runner, the current runner is required to execute part of the model.
if not self.not_need_stop():
self._execute_empty_input()
return None
# 1. Prepare inputs of model and decoder.
# sampler create async operation
skip_idx_list = self._get_skip_idx(model_forward_batch)
self._prepare_inputs()
self.sampler.pre_process(skip_idx_list)
# 2. Padding inputs for cuda grph
# 3. Execute model
# TODO(gongshaotian): Use seq_lens_encoder to set is_decode_batch
is_decode_batch = not ((self.share_inputs["seq_lens_this_time"]
> 1).sum() > 0)
self.forward_meta.step_use_cudagraph = self.use_cudagraph and is_decode_batch
self.forward_meta.is_decode_batch = is_decode_batch
model_output = self.model(
ids_remove_padding=self.share_inputs["ids_remove_padding"],
forward_meta=self.forward_meta)
hiddden_states = rebuild_padding(
model_output,
self.share_inputs["cum_offsets"],
self.share_inputs["seq_lens_this_time"],
self.share_inputs["seq_lens_decoder"],
self.share_inputs["seq_lens_encoder"],
self.share_inputs["output_padding_offset"]
if self.speculative_decoding else None,
self.parallel_config.max_model_len,
)
# 4. Compute logits, Sample
logits = self.model.compute_logits(hiddden_states)
if not self.speculative_decoding:
set_value_by_flags_and_idx(
self.share_inputs["pre_ids"],
self.share_inputs["input_ids"],
self.share_inputs["seq_lens_this_time"],
self.share_inputs["seq_lens_encoder"],
self.share_inputs["seq_lens_decoder"],
self.share_inputs["step_idx"],
self.share_inputs["stop_flags"],
)
sampled_token_ids = self.sampler(
logits,
self.sampling_metadata,
skip_idx_list,
)
if self.parallel_config.tensor_parallel_degree > 1:
paddle.distributed.broadcast(sampled_token_ids, 0)
else:
self.sampler(logits, self.sampling_metadata,
self.parallel_config.max_model_len, self.share_inputs)
sampled_token_ids = None
if self.parallel_config.tensor_parallel_degree > 1:
paddle.distributed.broadcast(
self.share_inputs["accept_tokens"], 0)
paddle.distributed.broadcast(self.share_inputs["accept_num"],
0)
paddle.distributed.broadcast(self.share_inputs["step_idx"], 0)
paddle.distributed.broadcast(self.share_inputs["stop_flags"],
0)
# 5. Post Process
model_output_data = ModelOutputData(
next_tokens=self.share_inputs["next_tokens"],
stop_flags=self.share_inputs["stop_flags"],
step_idx=self.share_inputs["step_idx"],
max_dec_len=self.share_inputs["max_dec_len"],
pre_ids=self.share_inputs["pre_ids"],
seq_lens_this_time=self.share_inputs["seq_lens_this_time"],
eos_token_id=self.share_inputs["eos_token_id"],
not_need_stop=self.share_inputs["not_need_stop"],
input_ids=self.share_inputs["input_ids"],
stop_nums=self.share_inputs["stop_nums"],
seq_lens_encoder=self.share_inputs["seq_lens_encoder"],
seq_lens_decoder=self.share_inputs["seq_lens_decoder"],
is_block_step=self.share_inputs["is_block_step"],
full_hidden_states=model_output,
msg_queue_id=self.parallel_config.msg_queue_id,
mp_rank=self.local_rank,
use_ep=self.parallel_config.use_ep,
draft_tokens=self.share_inputs["draft_tokens"]
if self.speculative_decoding else None,
actual_draft_token_num=self.share_inputs["actual_draft_token_num"]
if self.speculative_decoding else None,
accept_tokens=self.share_inputs["accept_tokens"]
if self.speculative_decoding else None,
accept_num=self.share_inputs["accept_num"]
if self.speculative_decoding else None)
if self.speculative_config.method in ["mtp"] and \
self.parallel_config.splitwise_role == "prefill":
skip_save_output = True
else:
skip_save_output = False
post_process(sampled_token_ids=sampled_token_ids,
model_output=model_output_data,
save_each_rank=self.parallel_config.use_ep,
speculative_decoding=self.speculative_decoding,
skip_save_output=skip_save_output)
# 6. Speculative decode
if self.speculative_decoding:
if self.speculative_method == "mtp":
self.proposer.run(full_hidden_states=model_output)
else:
self.proposer.run(share_inputs=self.share_inputs)
# 7. Updata 'infer_seed' and step_cuda()
self.share_inputs["infer_seed"].add_(self.infer_seed_increment)
self.share_inputs["infer_seed"][:] %= self.MAX_INFER_SEED
step_cuda(
self.share_inputs,
self.parallel_config.block_size,
self.parallel_config.enc_dec_block_num,
self.speculative_config,
self.parallel_config.enable_prefix_caching,
)
self._update_chunked_prefill(model_forward_batch)
self._add_cache(model_forward_batch)
return None
def _add_cache(self, model_forward_batch) -> None:
"""
Add cache for guided decoding.
"""
if self.guided_backend is None:
return
for request in model_forward_batch:
logits_cached = request.get("logits_cached", None)
if logits_cached is None or logits_cached:
continue
request.logits_cached = True
if isinstance(request.logits_processor, LogitsProcessorBase):
self.guided_backend.add_cache(request.schemata_key,
request.logits_processor)
else:
self.guided_backend.add_cache(
request.schemata_key, request.logits_processor.result())
def _execute_empty_input(self) -> None:
"""
In certain scenarios, such as during EP,
the runner needs to execute partial modules of the model without input data.
This requires the model to implement the `empty_input_forward` method.
"""
if hasattr(self.model, "empty_input_forward"):
self.model.empty_input_forward()
else:
raise ValueError(
f"{type(self.model)} has no attribute 'empty_input_forward")
def profile_run(self) -> None:
"""Execute a forward pass with dummy inputs to profile the memory usage of the model."""
# Initialize kv cache for profile run. After profile run kv cache will be reset.
# TODO(gongshaotian): Optimize the management logic of kvcache
self.num_gpu_blocks = self.parallel_config.max_block_num
self.initialize_kv_cache()
# 1. Profile with multimodal encoder & encoder cache
# 2. Dummy run
self._dummy_run(num_tokens=self.parallel_config.max_num_batched_tokens,
batch_size=min(self.parallel_config.max_num_seqs, 3))
# 3. gc
self.clear_cache()
if self.speculative_method in ["mtp"]:
self.proposer.clear_dummy_input()
def update_share_input_block_num(self, num_gpu_blocks: int) -> None:
"""
Set a globally unified block number and update the model's shared input.
Args:
num_gpu_blocks:
"""
self.num_gpu_blocks = num_gpu_blocks
# Reset block table and kv cache with global block num
if not (self.parallel_config.enable_prefix_caching \
or self.parallel_config.splitwise_role != "mixed"):
self.initialize_kv_cache()
# Reset free list
free_list = list(
range(
self.num_gpu_blocks - 1,
int(self.num_gpu_blocks * self.parallel_config.kv_cache_ratio)
- 1, -1))
self.free_list_len = len(free_list)
self.share_inputs.update({
"free_list":
paddle.to_tensor(free_list, dtype="int32"),
"free_list_len":
paddle.full([1], self.free_list_len, dtype="int32"),
})
self.parallel_config.do_profile = False
if self.speculative_method in ["mtp"]:
self.proposer.update_block_num(num_gpu_blocks)
def cal_theortical_kvcache(self):
"""
Calculate the total block memory required at the model level
TODO(gongshaotian): Move to Attention Backend
"""
"""
Byte of dtype:
- default(bf16): 2
- cache_int8: 1
- cache_int4:
"""
cache_quant_dtype = None
if (self.quant_config
and hasattr(self.quant_config, "kv_cache_quant_type")
and self.quant_config.kv_cache_quant_type is not None):
cache_quant_dtype = self.quant_config.kv_cache_quant_type
if cache_quant_dtype is not None: # int8, int8_zp, fp8, fp8_zp
byte_of_dtype = 1
else: # default
byte_of_dtype = 2
hidden_dim = self.model_config.head_dim * self.model_config.kv_num_heads
# NOTE(liuzichang): Implement multi-layer MTP architecture in the future
num_layers = self.model_config.num_layers + \
self.speculative_config.num_gpu_block_expand_ratio if \
self.speculative_method in [
"mtp"
] else self.model_config.num_layers
required_memory = (
byte_of_dtype * 2 * # k + v
(self.parallel_config.block_size * hidden_dim) * num_layers)
return required_memory
def not_need_stop(self) -> bool:
""" """
return self.share_inputs["not_need_stop"][0]